

nnState

Introduction

Motivation:

- With the proliferation in data, an introductory statistics course is a requirement for many degree programs
- Hypothesis testing is often presented as a rote procedure Many research communities falsely believe that only
- statistically significant results are meaningful With the growing desire to shift away from a dichotomous formal decision framework, interval estimation becomes a preferred way to communicate the findings of a study

Methods:

- Develop instrument using a fractional factorial design
- Deploy instrument to collect data from Penn State students enrolled in introductory statistics
- Analyze the data using multivariate techniques

Implications:

- Meaningful changes to curriculum and instruction
- Investigate misunderstandings and identify ways to effectively communicate about data using confidence intervals
- Prompt the formation of similarly designed instruments

Research Questions of Interest

- **RQ1:** What degree of understanding do students have about confidence intervals after completing an introductory statistics course using simulation-based inference methods?
- **RQ2:** How do individual students' backgrounds shape their interpretation and understanding of statistical concepts, including confidence intervals?

Methods

Subject:

- Statistical literacy (multidimensional construct): the ability to effectively read, construct schema, and use basic statistical information to solve problems and communicate findings
- Content area described by 5 attributes: confidence level, error, sample size, p-value, conditions of the data
- Testlet structure with mixed formats
- 3 selected response items to assess reading, constructing schema, and problem-solving; 1 constructed response item to assess communicating

Procedure:

- A 2⁵⁻¹ fractional factorial design assigned attributes to testlets
- The items within each testlet were constructed such that, collectively, they assessed the attributes assigned, and did not assess the attributes not assigned, to the testlet
- Items were revised to logically fit in the test blueprint

Intended Remaining Procedure:

- Items will be revised based on feedback provided from other expert statistics education researchers
- Think-aloud interviews with undergraduate and graduate statistics students will guide further revisions to the items
- The reliability & validity of the final instrument will be verified
- Plan to collect data at-large from Penn State students enrolled in an introductory statistics course

Measuring Statistical Literacy Surrounding Confidence Intervals Susan Lloyd, Matthew Beckman The Pennsylvania State University

|--|

Table 1: Alias Table for Resolution V Fractional (1/2) Factorial Design

Alias Table (Resolution V)						
Factors	Alias Structure					
А	I + ABCDE	AB + CDE				
В	A + BCDE	AC + BDE				
С	B + ACDE	AD + BCE				
D	C + ABDE	AE + BCD				
Е	D + ABCE	BC + ADE				
	E + ABCD	BD + ACE				
		BE + ACD				
		CD + ABE				
		CE + ABD				
		DE + ABC				

Figure	1: Test Blueprint	to Develop Items fo	r the Instrument As	ssessing Statistical Li	teracy Surrounding	Confidence Inte
Objectives Content	Use Power Analysis	Calculate (Estimate) Error	Build / Identify a CI	Compare / Discuss widths of the CI	Interpret in Context	Identify Plau Values
Confidence Level Error	S8Q31: Determine sample size needed to obtain the desired margin of error	S12Q47: Calculate margin of error from CI S16Q62: Calculate standard error for difference in means S16Q63: Estimate standard error from bootstrap distribution	S4Q14: Identify a CI as sample statistic +/ margin of error S6Q22: Construct CI using bootstrapping to estimate standard error S16Q64: Build a CI using the standard error estimated using a bootstrap distribution	S1Q3: How increasing / decreasing confidence level affects CI widthS4Q15: How decreasing confidence level affects widthS8Q32: Use formula for CI and relationship between confidence level and width of CI to explain relationship between confidence level and multiplierS11Q42: Determine appropriate multiplier based on knowledge of confidence level and width of CIS2Q7: How standard error affects CI widthS4Q15: How decreasing margin of error affects CI widthS8Q30: How standard error is affected by sample size, and in turn affects CI widthS9Q35: How pairing affects standard error, and in turn, CI widthS10Q39: How decreasing sample size affects error and CI width	 S1Q4: Interpret 95% CI for difference in proportions S4Q16: In the long run, how many intervals are expected to capture the true parameter S7Q26: Recognize parameter is fixed, process of constructing CI is random, confidence level determines success rate S7Q27: Interpret 99% CI for difference in means S7Q28: Discuss relationship between confidence level & CI S14Q56: Discuss trade- offs when determining the confidence level to choose 	S1Q2: Identify infero procedure and recogn represents range of re- values S1Q4: Determine if the evidence of a differen- between two groups S6Q23: Determine if is plausible based on with a specified level confidence S9Q33: Identify the confidence level
Sample Size	S8Q31: Determine sample size needed to obtain the desired margin of error		 S2Q8: Determine if the sample size is sufficiently large to justify use of CLT to form a CI S6Q24: Determine if the sample size is sufficiently large to use bootstrapping for constructing CI 	S1Q3: How increasing / decreasing sample size affects CI width S8Q30: How sample size affects standard error, and in turn affects CI width S10Q39: How decreasing sample size affects CI width S11Q44: How sample size affects CI width and precision S13Q50: Identify inferential procedure and meaning immed of amall	S13Q51: Recognize implications of small sample size S13Q52: Discuss whether the conditions are met based on the sample sizes S6Q24: Discuss how methods produce similar results (2SD method and percentile method) when sample size is large	 S1Q1: Identify a possisample based on con S3Q9: Identify the sistic in a given scenario S13Q49: Identify the size for each group
P-values			S5Q18: Choose reasonable form for CI and reasonable interval based on p-value	sample size on CI width	S3Q10: Interpret p-value in context S5Q19: How p-value changes going from CI (two-sided) to one-sided test S10Q40: Discuss relationship between p-value and CI	 S3Q11: Determine if parameter is plausible on the two-sided p-value compasignificance level base plausible values S5Q18: Identify a pl CI based on the p-va S5Q20: Determine if predictor is effective CI and discuss how p would compare to significance level S6Q23: How changinull value affects p-v S10Q38: Identify pe of statistics in each ta statistics in each ta statistics in the predictor is a difference in two based on the p-value S14Q54: Determine are (un)likely to occur how this reflects itse p-value S14Q55: Identify pe of statistics in each ta ta statistics in each ta ta ta ta ta ta the p-value
Conditions of the Data			 S2Q6: Build a CI using the 95% rule S2Q8: Use CLT to justify building a CI S3Q12: Determine if conditions are met for using normal distribution to build CI S9Q34: Use 95% rule to build CI using margin of error S12Q46: Determine if bootstrapping is appropriate to build a CI 	S1Q3: How outliers affect CI width	S6Q24: Discuss how CI's constructed using percentile and standard error method compare S15Q59: Recognize if 95% rule is appropriate in a given situation	 S9Q36: How outlier the range of plausible and resulting CI S15Q58: Identify mu using symmetry of the distribution S15Q60: Identify ran plausible values as the fall within 2 SD of state

Figure 2: Example of a Testlet from the Instrument

Instructions: Questions 1 – 4 pertain to the following scenario. Please read, and only consider, the following scenario when responding to these questions. Please provide a response to all questions. For multiple choice items, select the correct response from the options provided. For open-ended items, respond to the prompt using complete entences. The answers to questions 1-4 are not necessarily related.

Scenario 1 (confidence level, sample size, conditions of the data; NOT error, p-value): Two of the most popular flavors of ice cream at the Penn State Berkey Creamery are chocolate and

vanilla. During one of the monthly sales meetings, a worker mentions that female students tend to prefer

chocolate ice cream, whereas male students tend to prefer vanilla ice cream. As a result, the Creamery is

male college students who prefer chocolate ice cream at the Creamery?

Q1 (Reading). To construct a confidence interval for this study, the sample should consist of:

- (A) All college students
- (B) A subset of college students
- (C) All Berkey Creamery workers
- (D) A subset of Berkey Creamery workers

Q2 (Constructing Schema). The most appropriate inferential procedure to use in this scenario is a [answer 1] which would show the range of [answer 2] values for the parameter at the given level of

- (A) Confidence interval for a difference in means; unreasonable
- (B) Confidence interval for a difference in proportions; unreasonable
- (C) Confidence interval for a difference in means; reasonable
- (D) Confidence interval for a difference in proportions; reasonable

Q3 (Problem-Solving). Suppose that a researcher collects data on the sex and favorite ice cream flavor of a random sample of 100 Penn State students and finds the resulting 95% confidence interval of interest to be (0.177, 0.543). The researcher is concerned that the interval is too wide. The researcher could make the confidence interval narrower by:

- (A) Decreasing the confidence level from 95% to 90%
- (B) Decreasing the sample size from 100 students to 50 students
- (C) Increasing the confidence level from 95% to 99%
- (D) Increasing the number of outliers in the dataset

Q4 (Communicating). In the context of the research question of interest, interpret the 95% confidence interval found by the researcher: (0.177, 0.543). Is it plausible that there is a difference in female and male college students who prefer chocolate ice cream at the Creamery?

Ve are 95% confident that the proportion of female college students who prefer chocolate ice ream at the Creamery is between 0.177 and 0.543 higher than the proportion of male college lents who prefer chocolate ice cream at the Creamery. Since this interval does not contain zero, there is significant evidence of a difference in female and male college students who prefer chocolate ice cream at the Creamer

Future Work

- Use a natural language processing algorithm to score the open-ended responses at scale
- Study optimal feedback to provide to students based on their performance on the instrument
- Disseminate the instrument for use by statistics instructors in any environment for more generalizable results about the instrument's ability to effectively gauge students' understanding of confidence intervals

Acknowledgements

- Please see primary author for comprehensive list of references I would like to acknowledge the support of the Science Achievement Graduate Fellowship at Penn State
- Scan the following QR code to provide feedback or to indicate your interest in potential involvement with this project

