
UCLA
Technology Innovations in Statistics Education

Title
Building Interactive Tutorials for Teaching Psychological Statistics Online with learnr

Permalink
https://escholarship.org/uc/item/7w20x1p2

Journal
Technology Innovations in Statistics Education, 13(1)

Author
Aberson, Chris

Publication Date
2021

DOI
10.5070/T513153822

Copyright Information
Copyright 2021 by the author(s). All rights reserved unless otherwise indicated. Contact the
author(s) for any necessary permissions. Learn more at https://escholarship.org/terms

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/7w20x1p2
https://escholarship.org/terms
https://escholarship.org
http://www.cdlib.org/

Building Interacting Tutorials for Teaching Psychological
Statistics Online with learnr

Chris Aberson
Humboldt State University

 ABSTRACT

Faculty are increasingly tasked with online teaching duties. This paper provides a how-to guide
to using the learnr package for R. This package allows instructors to create seamless interactive
tutorials that can use video, quizzes, and exercises run in R to foster student engagement and
learning of statistics. Since the beginning of the Covid-19 pandemic, more faculty than ever are
teaching online. learnr tutorials provide a format that allows for greater student engagement with
materials by providing opportunities to test knowledge and practice after viewing short videos on
topics. I provide concrete instructions for developing learnr tutorials for teaching introductory
statistics and provide insights from having applied these technologies for over a year. learnr is a
tool that can assist instructors in leveraging valuable teaching opportunities afforded by the
technology is a manner that requires only small changes in their more prevalent approaches to
teaching online.

Keywords: Statistics, R, Interactive Tutorial, learnr

1. INTRODUCTION
The learnr package was developed by members of the RStudio team (RStudio Team 2020) to
provide an easy-to-use approach to building interactive tutorials. In this tutorial, I demonstrate
strategies for using learnr to build interactive tutorials and provide examples of how to develop
materials using this tool. Please see (https://github.com/chrisaberson/IntroStatsTutorials) for the
most recent version of these tutorials.

Most faculty experienced a considerable increase in online teaching responsibilities due to the
Covid-19 pandemic. Although such changes are challenging, these new responsibilities bring
considerable opportunity to re-evaluate course delivery. The learnr package for R provides
considerable tools for using existing technology to move away from a simple lecture focus to a
more dynamic approach that mixes short instructional videos with low stakes quizzes and a space
to complete exercising using R.

The intended audience for this paper are those teaching statistics in any discipline with R and
RStudio used jointly as the primary statistical software. The learnr package only works within
the RStudio environment. I built all materials using R version 4.03 and RStudio version 1.4.904.
Readers not familiar with R, RStudio, or R Markdown, will find useful online resources at
https://r4ds.had.co.nz/ (a free text on using R) and https://www.rstudio.com/resources/webinars/
(RStudio free webinars).

1

https://r4ds.had.co.nz/
https://www.rstudio.com/resources/webinars/

In my own Introductory Psychological Statistics course, I design each tutorial around a topic
(e.g., data visualization, t-tests) and provide materials that include detailed learning objectives,
numerous short (usually 5-10 minute) videos on topics, interactive (ungraded) quizzes, apps
demonstrating concepts, and data-based exercises. The student’s experience in working through
tutorials is one of watching a short video, taking a quiz on what they just watched, seeing
detailed examples of code, working through exercises using R, and then completing a quiz
focused on interpretation of the statistical results. In contrast to a typical course wherein students
sit through lecture and then move to a laboratory session to get familiar with software-driven
analyses, the tutorial approach makes working with materials far more immediate while
providing a low-stakes environment for learning. learnr tutorials were the primary means of
content delivery. Assessments primarily involved homework assignments, exams, and a final
project.

This approach provides several advantages. First, use of low-stakes assessment enhances
retrieval of information. In addition, use of these assessments relates to improved performances
on knowledge assessments taken later (Sana et al. 2021). Tutorials are a form of self-regulated
study. Self-regulated study has many benefits including accurate assessments of ongoing learning
and a better understanding of how learning happens (Kornell and Bjork 2007).

In this paper, I detail how to get started with developing learnr tutorials, how to bundle tutorials
and data into an R package for distribution, and provide tips based on my experiences having
nearly 100 beta testers (a.k.a., students) use my tutorials across various statistics courses. This
article is meant to supplement tutorial materials found at https://rstudio.github.io/learnr/ by
making them more accessible and providing detailed “how to” examples.

2. MAKING THE TUTORIAL
As a first step, install the learnr package (Schloerke et al. 2020). Choose file – new file – R
Markdown – From Template to create a new tutorial. Alternatively, it can be simpler to take an
existing tutorial and modify it. Some useful examples can be found at
https://github.com/chrisaberson/IntroStatsTutorials and https://github.com/profandyfield/adventr.

Next, begin to add elements. To do so, requires setting various parameters. In R Markdown, code
is placed in “chunks.” Chunks are distinguished from text as they include executable code.
Choosing “From Template” when creating a new file will create a file with an automatically
generated header as in Code Snippet 1. In general, it is best not to change this header as it is
fussy. Every space or dash matters.

Code Snippet 1 demonstrates the automatically generated header.

Code Snippet 1. learnr header

2

https://rstudio.github.io/learnr/

The materials on lines 10,11, and 16 are automatically generated global settings necessary to
correctly display quizzes (I come back to these later). Add the necessary libraries to your tutorial
by simply typing code inside the chunk. Code Snippet 2 adds the libraries learnr, ggplot2, knitr
and IntroStatsTutorials

Code Snippet 2. Opening Code Chunk

Next, add content. You can control the “flow” of the tutorial using ## and ### to define heading
levels. The ## heading level means that everything that follows is on a new page. The ###
heading level means the materials that follow get their own heading but appear on the same page.
The # heading level is the title of the tutorial (you only use it once). Code Snippet 3 shows use of
headings and the addition of text. As part of my overview, I provide some background on data
used for exercises, required packages, and learning objectives.

Code Snippet 3. Top and 2nd level header and text

Figure 1 shows how the tutorial renders the code.

Figure 1. Rendered Code

3. VIDEOS

3

The code in Code Snippet 4 demonstrates how to add a video. I recommend using short videos
that range from 5-9 minutes as this length appears to be most effective at holding student
attention (Guo et al. 2014).

Code Snippet 4. Adding video

Adding images is a process similar to adding videos. Simply provide the location (ideally in the
same directory as your tutorial file with a subdirectory called “images.”

4. QUIZZES
After viewing a video, students then proceed to a quiz. The implementation of quizzes is a bit
fussy in terms of formatting, so you will end up spending some time figuring out why code is not
working. Common issues are missing commas and unbalanced parentheses. As with most
statistical programs, R rarely produces error messages that are useful.

learnr quizzes are ungraded. You can decide whether to allow students to try to answer questions
multiple times. My approach is to allow students to try until they get the correct answer and
provide feedback on each question to further build comprehension. A sample quiz is in Code
Snippet 5.

Code Snippet 5. Code for adding a quiz

4

The chunk begins with a title for the quiz: quiz1. All quizzes include a unique title. The rest of
the code is relatively straightforward but there are a handful of components that I want to
highlight. First, quizzes of this nature that provide low stakes testing are most useful for students
when paired with feedback (Warnock 2013). For correct answers, I make sure to remind the
student why their answer is correct. The message command demonstrates how to add feedback.

As noted above, commas and parentheses will typically be the cause of broken quizzes, so do
attend to those closely. I copy and paste existing (working) quizzes and then simply modify text
for new questions. Third, you can test a quiz by clicking the “play” button in the upper right
corner of the chunk.

In writing quizzes, you can provide feedback for correct answers and incorrect answers. To add
specific feedback for specific incorrect answers, the message command is used as demonstrated.
In writing quizzes, I try to match incorrect answers to common student misconceptions and
giving feedback on correct answers that reinforce learning. For example, in one of the questions
above, my distractor items focus on common misinterpretations of histograms. One common
misinterpretation is confusing the majority of scores with “nearly all the scores.” For that option,
feedback reads, “that range appears to capture 75% of the scores. 'Most' would mean more than
50%.”

5. EXERCISES
Exercises allow users to run analysis in R within the tutorial. My approach to exercises is to first
provide an example of how to run an analysis and then have students try those analyses out on a
different set of variables or data. The Code Snippets that follow demonstrate a few useful
approaches. First, display code, not output. This approach is useful when presenting code to
students as a demonstration of how to run analyses. The eval=F in the header tells the tutorial to
show the code but not the output. If eval=T then the code will be displayed, and the analysis will
run. If echo=F, code is not displayed. I often use this approach to provide output from analyses
for quizzes. Code Snippet 6 demonstrates the code.

Code Snippet 6. Running R in the tutorial

To start an exercise, begin with two chunks. One for the question and one for the solution. As
with quizzes, exercises require unique names. The first chunk of code (line 255) in Code Snippet
7 establishes that this is an exercise and the second provides the correct syntax. Code Snippet 7
produces the assignment text and a box for students to enter their solution, as rendered in Figure

5

2.

Code Snippet 7. An exercise

The code in Code Snippet 7 renders as shown in Figure 2. The Solution button brings up the
correct code and the Run Code button submits the code to R. Output, including any error
messages, appears directly below.

Figure 2. Rendered exercise

One approach that I tend to use with exercises is to combine them with quizzes. A student might
complete the exercise portion and then go to a quiz that reproduces their output and focuses on
interpretation of the results.

Following my experiences with learnr, I offer the following suggestions. If you are using data
that is not standard R issue (e.g., iris), you should make a package that includes your data and all
other tutorial materials. If you are not using external data, this process is unnecessary. The
approach I employ involves creating a package to house the entire course. Test your exercises
numerous times. There is nothing more frustrating for students than broken exercises. Clear the
R session workspace when testing. I regularly find things only work because of what was active
in my workspace, meaning that the tutorial will not run properly in standalone. If, like me, you
follow-up exercises with quizzes, be aware that students might not have run their exercise
analyses correctly, and so might get the quiz wrong even if they used the correct approach. To
account for this, I create a new page for the quiz and run the correct analysis so that the questions
address relevant output.

6. TEXT AND EQUATIONS
Text formatting is relatively straightforward with common commands including *italics*,
bold, Superscript^2^, Subscript~2~. Equations are a bit trickier as they rely on LaTeX. I

6

found the materials at https://sv.overleaf.com/learn/latex/Mathematical_expressions very helpful
for learning LaTeX. Although this format seems challenging at first, I found that an hour or two
was all that I needed to learn the format. Code Snippet 8 demonstrates the equation code and
how equations render. This code easily accommodates full numeric examples.

Code Snippet 8. Code and rendered equations

7. SHINY APPS
Shiny apps are interactive graphical interfaces that allow for a variety of applications. To the user
these are viewed as apps that integrate directly in the tutorial. Pre-made Shiny apps exist for a
number of useful visualizations such as guessing correlation size based on a scatterplot and the
influence of outliers on correlation. Table 1 provides links to several sources for shiny apps.
Inclusion of a Shiny is straightforward, involving only a call to the app as shown in Code Snippet
9. One common issue with Shiny apps is that they only appear when the tutorial is run in a
browser (there is a button in the left-hand corner to open in a browser). I have found that I need
to experiment with the height parameter within the include_app call to make sure everything
appears on a single page. (See Code Snippet 9)

Table 1. Shiny app resources

http://facweb.gvsu.edu/adriand1/215apps.html

https://github.com/ShinyEd/intro-stats

https://statistics.calpoly.edu/shiny

https://www4.stat.ncsu.edu/~jbpost2/teaching.html

http://www.artofstat.com/webapps.html

http://facweb.gvsu.edu/adriand1/215apps.html

7

https://sv.overleaf.com/learn/latex/Mathematical_expressions

https://github.com/ShinyEd/intro-stats

Code Snippet 9. Adding a shiny app

8. MAKING A PACKAGE FOR DISTRIBUTION
learnr tutorials can be distributed as simple markdown files, however, that approach does not
allow for inclusion of datasets. In order to include data, tutorials will need to be packaged. I
generally create a single package for the entire class and update it as necessary. I believe that the
most challenging aspect of building tutorials is the packaging process. The steps that follow
detail how to build a package within RStudio.

The first step in making a package is to create it. Click File – New Project then choose New
Directory (best to start empty). Choose R Package using devtools. Give it a name and create the
project. At this point you will have a directory with some autogenerated directories. This
includes directories for R and man (manuals). To these you will need to add a directory on your
computer called "data" and one called "inst" that includes a subdirectory called "tutorials".
Figure 3 demonstrates the directory structures.

Figure 3. Directory Structure

The next step involves adding a number of specific files. The first is a file inside the R directory
with the same name as your package (packagename.R). This file provides some description and,
if needed, is where you specify packages used in the tutorial and other pieces. Next is a file
inside the R directory called data.R that describes your datafiles. If you have large datasets, you
might just want to subset these to the variables used in exercises as you have to define all the
variables. There will be a file generated automatically called “hello.R” that should be deleted.
Finally, go to inst/tutorials/tutorialname and put your markdown file (the tutorial) in that
directory. If you have images, put those in inst/tutorials/tutorialname/images.

8

Code Snippet 10 demonstrates the structure of the data.R file. This file defines all data used in
any of the tutorials. Every line is preceded with #’. The @format command defines the
dimensions of the datafile and will throw an error if the numbers are wrong. \describe defines
each item in order. You have to define everything in the dataset, in the correct order, and spelled
correctly. The file name goes on the bottom. If you have multiple datafiles, just repeat the
process in the same file.

Code Snippet 10. Structure of the data.R file

Next is the packagename.R file. This provides a brief description of the tutorial. The @import
command controls the packages required by the tutorials. Much of the rest of the file is
automatically generated. Figure 4 shows the structure of this file.

9

Figure 4. Packagename.R file structure

Building your Package

RStudio provides considerable functionality for building packages. Most functionality requires
the devtools package (Wickham et al. 2020). There are many approaches to building packages, I
present only an RStudio focused approach. Figure 5 shows the basic process for package
building. Simply choose Clean and Rebuild to start.

Figure 5. Building a package

You will most likely experience errors when you first build your package. Don’t be discouraged,
this happens all the time. The error message will provide a line number that corresponds to the
chunk that doesn’t work; this information will allow you to identify the problematic code chunk.

After building the package, you will have a few new files in your directory. The description file
is where you can put basic information about your work. These meta data are generally only
necessary for packages that will be widely distributed, so you can skip this step. Code Snippet 11
details that basic structure of the description file.

10

Code Snippet 11. DESCRIPTION file

Next is the NAMESPACE file. Every package has a file called NAMESPACE. This file controls
actions such as the packages that get installed and loaded automatically. Building the package
creates an empty NAMESPACE file. devtools::document() is a command developed to make
building the NAMESPACE simple. Simply type devtools::document() with your project open (or
use the pull-down menu). The document() command provides a quick way for the
NAMESPACE to reflect what was specified in the packagename.R file (when indicating
imports). This also generates help files (not useful here but a massive time saver if you are
making a package for distribution on CRAN).

Finally, build a source package for distribution. This creates a compressed file that you can easily
distribute via LMS or email for students to install. Choosing Build Source Package creates a file
called packagename.tar.gz. This file generally gets built to a directory one up from your tutorial.
For example, on my computer, this would be G:/My Drive rather than G:/My
Drive/IntroStatsTutorials). To do this, students should choose Install from source package and
then navigate to the file. Figure 6 includes a screenshot of this process.

11

Figure 6. Package installation

9. CHALLENGES AND BEST PRACTICES
As learnr and your new packages will be loaded on a large number of individually configured
machines across at least three different platforms, there will be occasional errors that pop up.
One persistent issue is around packages. Many packages require several other packages. This
sometimes creates problems when installing the tutorial. In general, error messages will point to
a package that could not be located. A simple fix for this is to download the offending packages
manually. Also, as noted before, often times packages will run on your computer but not others.
This is usually an issue around having certain required files open in your environment but not
having those pieces in the tutorial itself. To address this, I always make sure to clear my
environment. Go to Session – Clear Workspace to accomplish this.

To support academic integrity, I add a different randomly generated four-digit number at the end
of each student's tutorial. Students need to enter their unique number into our course
management software for credit. This approach may not be ideal for all instructors. Those
interested in logging student responses for credit should refer to the submitr
(https://github.com/dtkaplan/submitr) or learnrhash (https://github.com/rundel/learnrhash).

Based on my experience, I offer the following best-practices advice. First, check package builds
on multiple platforms. I have students on PCs, Macs, and Chromebooks. Issues and problems
differ by platform. I use the rhub package (Csárdi and Salmon 2019) to check my package build
on various platforms. The check_for_cran command provides a test on windows and linux and
check_on_macos tests on the Mac. If at all possible, try checking on a second machine with a
clean install. Make sure that students with previous installs update to the latest versions of R and
RStudio.

10. CONCLUSION

12

The learnr package provides instructors with tools that allow for development of interactive
online instruction. Through integration of video, executable code, quizzes, and shiny apps,
courses move beyond simple videos to a more engaging format that allows students the
opportunity to practice what they learned from viewing a video.

REFERENCES
Csárdi, G., and Salmon, M. (2019), rhub: Connect to “R-hub.”

Guo, P. J., Kim, J., and Rubin, R. (2014), “How video production affects student
engagement: an empirical study of MOOC videos,” in Proceedings of the first ACM
conference on Learning @ scale conference, L@S ’14, New York, NY, USA:
Association for Computing Machinery, pp. 41–50.
https://doi.org/10.1145/2556325.2566239.

Kornell, N., and Bjork, R. A. (2007), “The promise and perils of self-regulated study,”
Psychonomic Bulletin & Review, 14, 219–224. https://doi.org/10.3758/BF03194055.
RStudio Team (2020), RStudio: Integrated Development Environment for R, Boston,
MA: RStudio, PBC.

Sana, F., Yan, V. X., Clark, C. M., Bjork, E. L., and Bjork, R. A. (2021), “Improving
conceptual learning via pretests,” Journal of Experimental Psychology: Applied,
American Psychological Association, 27, 228–236. https://doi.org/10.1037/xap0000322.

Schloerke, B., Allaire, J. J., and Borges, B. (2020), learnr: Interactive Tutorials for R.

Warnock, S. (2013), “Frequent, Low-Stakes Grading: Assessment for Communication,
Confidence,” Faculty Focus | Higher Ed Teaching & Learning.

Wickham, H., Hester, J., and Chang, W. (2020), devtools: Tools to Make Developing R
Packages Easier.

13

