Randomization Tests Beyond One/Two Sample Means \& Proportions

Patti Frazer Lock, St. Lawrence University Robin Lock, St. Lawrence University

Kari Lock Morgan, Penn State

USCOTS 2019

Randomization Test

Basic Procedure:

1. Calculate a test statistic for the original sample.
2. Simulate a new (randomization) sample under the null hypothesis.
3. Calculate the test statistic for the new sample.
4. Repeat $2 \& 3$ thousands of times to generate a randomization distribution.
5. Find a p-value as the proportion of simulated samples that give a test statistic as (or more) extreme as the original sample.

Tests in this Breakout

Chi-square goodness-of-fit
Chi-square test for association Cat. vs. Cat. ANOVA for means Cat. vs. Quant.

ANOVA for regression Quant. vs. Quant.

These all test for a relationship
H_{0} : No relationship How do we use the data to simulate samples under this null hypothesis?

No Relationship via Scrambling

x_{1}	y_{1}
x_{2}	y_{2}
x_{3}	y_{3}
x_{4}	y_{4}
x_{5}	y_{5}
x_{6}	y_{6}
x_{7}	y_{7}
x_{8}	y_{8}
x_{9}	y_{9}

Two Quantitative

No Relationship via Scrambling

x_{1}	y_{8}
x_{2}	y_{7}
x_{3}	y_{5}
x_{4}	y_{4}
x_{5}	y_{1}
x_{6}	y_{6}
x_{7}	y_{9}
x_{8}	y_{2}
x_{9}	y_{3}

Two Quantitative

No Relationship via Scrambling

x_{1}	y_{1}
x_{2}	y_{2}
x_{3}	y_{3}
x_{4}	y_{4}
x_{5}	y_{5}
x_{6}	y_{6}
x_{7}	y_{7}
x_{8}	y_{8}
x_{9}	y_{9}

Two Quantitative

A	y_{1}
A	y_{2}
A	y_{3}
B	y_{4}
B	y_{5}
B	y_{6}
C	y_{7}
C	y_{8}
C	y_{9}

\hline y_{2}

\hline y_{3}

\hline y_{4}

\hline y_{5}

\hline y_{6}

\hline y_{7}

\hline y_{8}

\hline\end{array}\right.\)

One Categorical One Quantitative

No Relationship via Scrambling

x_{1}	y_{8}
x_{2}	y_{7}
x_{3}	y_{5}
x_{4}	y_{4}
x_{5}	y_{1}
x_{6}	y_{6}
x_{7}	y_{9}
x_{8}	y_{2}
x_{9}	y_{3}

Two Quantitative

A	y_{8}		
A	y_{7}		
A	y_{5}		
B	y_{4}		
B	y_{1}		
B	y_{6}		
C	y_{9}		
C	y_{2}		
C	y_{3}	\quad	y_{1}
:---			
y_{2}			
y_{3}			
y_{4}			
y_{5}			
y_{6}			
y_{7}			
y_{8}			

One Categorical One Quantitative

No Relationship via Scrambling

x_{1}	y_{1}
x_{2}	y_{2}
x_{3}	y_{3}
x_{4}	y_{4}
x_{5}	y_{5}
x_{6}	y_{6}
x_{7}	y_{7}
x_{8}	y_{8}
x_{9}	y_{9}

Two Quantitative

A	y_{1}
A	y_{2}
A	y_{3}
B	y_{4}
B	y_{5}
B	y_{6}
C	y_{7}
C	y_{8}
C	y_{9}

A	yes		
A	no		
A	no		
B	yes		
B	no		
B	yes		
C	yes		
C	yes		
C	no	\quad	yes
:---			
no			
no			
yes			
yo			
yes			
yes			
no			

One Categorical Two Categorical One Quantitative

No Relationship via Scrambling

x_{1}	y_{8}
x_{2}	y_{7}
x_{3}	y_{5}
x_{4}	y_{4}
x_{5}	y_{1}
x_{6}	y_{6}
x_{7}	y_{9}
x_{8}	y_{2}
x_{9}	y_{3}

A	y_{8}
A	y_{7}
A	y_{5}
B	y_{4}
B	y_{1}
B	y_{6}
C	y_{9}
C	y_{2}
C	y_{3}

A	yes		
A	yes		
A	no		
B	yes		
B	yes		
B	yes		
C	no		
C	no		
C	no	\quad	yes
:---			
no			
no			
yes			
yes			
yes			
yes			

Two Quantitative

One Categorical Two Categorical One Quantitative

What Statistic?

We can scramble to simulate samples under a null of "no relationship". What statistic should we compute for each sample?
$\begin{aligned} & \text { Chi-square for } \\ & \text { Association: }\end{aligned} \quad \chi^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}$
Let
$\begin{aligned} & \text { ANOVA for } \\ & \text { Means: }\end{aligned} \quad F=\frac{M S G}{M S E}=\frac{\sum n_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2} / d f_{1}}{\sum\left(x-\bar{x}_{i}\right)^{2} / d f_{2}} \begin{aligned} & \text { technology } \\ & \text { take care of } \\ & \text { calculations }\end{aligned}$
ANOVA for
Regression:

$$
F=\frac{\text { MSModel }}{M S E}=\frac{\sum(\hat{y}-\bar{y})^{2} / d f_{1}}{\sum(y-\hat{y})^{2} / d f_{2}}
$$

Example \#1: Which Award?

If you could win an Olympic Gold Medal, Academy Award, or Nobel Prize, which would you choose?
Do think the distributions will differ between male and female students?

	Olympic	Academy		Nobel			
Male	$109(97.0)$	11	(16.5)	73	(79.4)	193	
Female	$73(85.0)$	20	(14.5)	76	(69.6)	169	
	182	31		149		$\mathrm{n}=362$	

$$
\chi^{2}=8.24 \quad \text { Is that an unusually large value? }
$$

Randomization for Awards

- Shuffle 362 cards (193 male, 169 female)
- Randomly deal 182 cards to Olympic, 31 to Academy, and the remaining 149 to Nobel.
- Find the two-way table (Sex x Award) and compute χ^{2}.
- Repeat 1,000 's of times to get a distribution under the null.

Time for technology...
StatKey
http://lock5stat.com/statkey

StatKey Chi-square Test for Association

Student Survey (Award by Gender) - Show Data Table Edit Data Upload File

Generate 1 Sample	Generate 10 Samples	Generate 100 Samples	Generate 1000 Sar

Randomization Dotplot of χ^{2}, Null hypothesis: No Assoc

\square Left Tail \square Two-Tail $\nabla_{\text {Right Tail }}$

Example \#2: Sandwich Ants

Experiment:

Place pieces of sandwich on the ground, count how many ants are attracted. Does it depend on filling?

	df	SS	MS	F
Groups	2	1561.0	780.5	
Error	21	2913.0	138.7	
Total	23	4474.0		

Favourite Experiments: An Addendum to What is the Use of Experiments
Conducted by Statistics Students? Margaret Mackisack
http://www.amstat.org/publications/jse/v2n1/mackisack.supp.html

Randomization for Ants

- Write the 24 ant counts on cards.
- Shuffle and deal 8 cards to each sandwich type.
- Construct the ANOVA table and find the F-statistic.
- Repeat 1,000's of times to get a distribution under the null.

> StatKey

Example \#3: Predicting NBA Wins

Predictor: PtsFor (Points scored per game)

Randomization for NBA Wins

- Put the 30 win values on cards.
- Shuffle and deal the cards to assign a number of Wins randomly to each team.
- Compute the F-statistic when predicting Wins by PtsFor based on the scrambled sample.
- Repeat 1,000 's of times to get a distribution under the null.

> StatKey

Randomization Dotplot of F-Statistic ~, Null hypothesis: $\boldsymbol{\beta}_{1}=0$

Example \#4: Rock, Paper, Scissors

Play best of three games each. Record counts for all choices.

Rock		Paper		Scissors	
65	(72)	67	(72)	84	
(72)					

Scissors

Let p_{1}, p_{2}, p_{3} be the respective population proportions

$$
\begin{aligned}
& H_{0}: p_{1}=p_{2}=p_{3}=1 / 3 \quad \text { Expected }=n p_{i}=216 \cdot \frac{1}{3}=72 \\
& H_{a}: \text { Some } p_{i} \neq 1 / 3
\end{aligned}
$$

$$
\left.\chi^{2}=\frac{(65-72)^{2}}{72}+\frac{(67-72)^{2}}{72}+\frac{(84-72)^{2}}{72}=3.03\right)
$$

Randomization for RPS

- Start with an equal number of Rock, Paper, and Scissor cards.
- Sample 216 times with replacement.
- Construct the table of counts and compute a chisquare statistic
- Repeat 1000's of times to get a distribution under

$$
H_{0}: p_{1}=p_{2}=p_{3} .
$$

What Statistic?

Chi-square for Association:

$$
\chi^{2}=\sum \frac{(\text { observed }- \text { expected })^{2}}{\text { expected }}
$$

ANOVA for Means:

$$
F=\frac{M S G}{M S E}=\frac{\sum n_{i}\left(\bar{x}_{i}-\bar{x}\right)^{2} / d f_{1}}{\sum\left(x-\bar{x}_{i}\right)^{2} / d f_{2}}
$$

ANOVA for
Regression:

$$
F=\frac{M S M o d e l}{M S E}=\frac{\sum(\hat{y}-\bar{y})^{2} / d f_{1}}{\sum(y-\hat{y})^{2} / d f_{2}}
$$

If we were ONLY using randomization, would we still use these?

What Statistic?

But StatKey doesn't do that statistic...

```
library(mosaic)
rand_dist=do(5000)*statistic(randomize(data))
```

SSqs=do (5000) *anova (lm (sample (y) ~x,data=db))
library (infer)
rand_dist <- data \%>\%
specify (y ~ x) \%>\%
hypothesize (null = "independence") \%>\%
generate (reps $=10000$, type $=$ "permute") \%>\%
calculate (stat = STATISTIC)

Thank you!

QUESTIONS?

Slides posted at www.lock5stat.com

