Randomization Tests -Beyond One/Two Sample Means & Proportions

Patti Frazer Lock, St. Lawrence University Robin Lock, St. Lawrence University Kari Lock Morgan, Penn State

**USCOTS 2019** 

# **Randomization Test**

#### **Basic Procedure:**

- 1. Calculate a test statistic for the original sample.
- 2. Simulate a new (randomization) sample under the null hypothesis.
- 3. Calculate the test statistic for the new sample.
- 4. Repeat 2 & 3 thousands of times to generate a randomization distribution.
- 5. Find a p-value as the proportion of simulated samples that give a test statistic as (or more) extreme as the original sample.

#### **Tests in this Breakout**

Chi-square goodness-of-fit

Chi-square test for association Cat. vs. Cat.

**ANOVA for means** 

Cat. vs. Quant.

ANOVA for regression

Quant. vs. Quant.

These all test for a relationship

*H*<sub>0</sub>: No relationship

How do we use the data to simulate samples under this null hypothesis?



**Two Quantitative** 



**Two Quantitative** 

| $x_1$                 | <i>y</i> <sub>1</sub> |
|-----------------------|-----------------------|
| <i>x</i> <sub>2</sub> | <i>y</i> <sub>2</sub> |
| <i>x</i> <sub>3</sub> | <i>y</i> <sub>3</sub> |
| <i>x</i> <sub>4</sub> | <i>y</i> <sub>4</sub> |
| <i>x</i> <sub>5</sub> | $y_5$                 |
| <i>x</i> <sub>6</sub> | <i>y</i> <sub>6</sub> |
| <i>x</i> <sub>7</sub> | <i>y</i> <sub>7</sub> |
| <i>x</i> <sub>8</sub> | <i>y</i> <sub>8</sub> |
| $x_9$                 | <i>y</i> <sub>9</sub> |

|      | A | $y_1$                 |         | $y_1$                 |
|------|---|-----------------------|---------|-----------------------|
|      | A | $y_2$                 |         | $y_2$                 |
| 1000 | A | <i>y</i> <sub>3</sub> |         | <i>y</i> <sub>3</sub> |
|      | В | <i>y</i> <sub>4</sub> | -       | <i>y</i> <sub>4</sub> |
|      | В | $y_5$                 | 1       | $y_5$                 |
| 5.75 | В | $y_6$                 | 1.1.2.2 | <i>y</i> <sub>6</sub> |
|      | С | <i>y</i> <sub>7</sub> | 1       | <i>y</i> <sub>7</sub> |
|      | С | <i>y</i> <sub>8</sub> | 1.5     | <i>y</i> <sub>8</sub> |
|      | С | <i>y</i> <sub>9</sub> |         | <i>y</i> <sub>9</sub> |

Two Quantitative

One Categorical One Quantitative

| $x_1$                 | $y_8$                 |  |
|-----------------------|-----------------------|--|
| <i>x</i> <sub>2</sub> | $y_7$                 |  |
| <i>x</i> <sub>3</sub> | $y_5$                 |  |
| <i>x</i> <sub>4</sub> | $y_4$                 |  |
| $x_5$                 | <i>y</i> <sub>1</sub> |  |
| $x_6$                 | $y_6$                 |  |
| <i>x</i> <sub>7</sub> | <i>y</i> <sub>9</sub> |  |
| $x_8$                 | $y_2$                 |  |
| <i>x</i> <sub>9</sub> | <i>y</i> <sub>3</sub> |  |

| <br> |                       |   |                |
|------|-----------------------|---|----------------|
| A    | $y_8$                 |   | $y_1$          |
| A    | $y_7$                 | 1 | $y_2$          |
| A    | $y_5$                 |   | $y_3$          |
| В    | $y_4$                 |   | $y_4$          |
| В    | $y_1$                 |   | $y_5$          |
| В    | $y_6$                 |   | $y_{\epsilon}$ |
| С    | <i>y</i> <sub>9</sub> |   | $y_7$          |
| С    | $y_2$                 |   | $y_8$          |
| С    | <i>y</i> <sub>3</sub> |   | yç             |

Two Quantitative

One Categorical One Quantitative

| $x_1$                 | $y_1$                 |  |
|-----------------------|-----------------------|--|
| <i>x</i> <sub>2</sub> | $y_2$                 |  |
| <i>x</i> <sub>3</sub> | <i>y</i> <sub>3</sub> |  |
| $x_4$                 | <i>y</i> <sub>4</sub> |  |
| $x_5$                 | $y_5$                 |  |
| $x_6$                 | $y_6$                 |  |
| <i>x</i> <sub>7</sub> | $y_7$                 |  |
| $x_8$                 | $y_8$                 |  |
| <i>x</i> <sub>9</sub> | <i>y</i> <sub>9</sub> |  |

|        | A | $y_1$                 |  |
|--------|---|-----------------------|--|
|        | A | $y_2$                 |  |
| 10 M M | A | <i>y</i> <sub>3</sub> |  |
|        | В | $y_4$                 |  |
|        | В | $y_5$                 |  |
|        | В | <i>y</i> <sub>6</sub> |  |
|        | С | <i>y</i> <sub>7</sub> |  |
|        | С | <i>y</i> <sub>8</sub> |  |
|        | С | <i>y</i> <sub>9</sub> |  |

| A | yes |  |
|---|-----|--|
| A | no  |  |
| A | no  |  |
| B | yes |  |
| B | no  |  |
| В | yes |  |
| С | yes |  |
| С | yes |  |
| C | no  |  |

yes

no

no

yes

no

yes

yes

yes

no

Two Quantitative

One Categorical Two Categorical One Quantitative

| $x_1$                 | $y_8$                 |
|-----------------------|-----------------------|
| <i>x</i> <sub>2</sub> | <i>y</i> <sub>7</sub> |
| <i>x</i> <sub>3</sub> | <i>y</i> <sub>5</sub> |
| <i>x</i> <sub>4</sub> | <i>y</i> <sub>4</sub> |
| $x_5$                 | <i>y</i> <sub>1</sub> |
| $x_6$                 | <i>y</i> <sub>6</sub> |
| <i>x</i> <sub>7</sub> | <i>y</i> 9            |
| $x_8$                 | $y_2$                 |
| <i>x</i> <sub>9</sub> | <i>y</i> <sub>3</sub> |

| A | $y_8$                 |  |
|---|-----------------------|--|
| A | $y_7$                 |  |
| A | $y_5$                 |  |
| В | $y_4$                 |  |
| В | $y_1$                 |  |
| В | $y_6$                 |  |
| С | <i>y</i> <sub>9</sub> |  |
| С | $y_2$                 |  |
| С | $y_3$                 |  |

| A | yes                             |                              | yes                             |
|---|---------------------------------|------------------------------|---------------------------------|
| A | yes                             |                              | no                              |
| A | no                              |                              | no                              |
| В | yes                             | 7                            | yes                             |
| B | yes                             |                              | по                              |
| В | yes                             |                              | yes                             |
| С | по                              | 14-11                        | yes                             |
| С | no                              |                              | yes                             |
| С | no                              | 10                           | no                              |
|   | A<br>A<br>B<br>B<br>C<br>C<br>C | AyesAyesAnoByesByesCnoCnoCno | AyesAyesAnoByesByesCnoCnoCnoCno |

Two Quantitative

One Categorical Two Categorical One Quantitative

#### What Statistic?

We can scramble to simulate samples under a null of "no relationship". What statistic should we compute for each sample?

Chi-square for Association:  $\chi^2 = \sum \frac{(observed - expected)^2}{expected}$ 

ANOVA for Means:  $F = \frac{MSG}{MSE} = \frac{\sum n_i (\bar{x}_i - \bar{x})^2 / df_1}{\sum (x - \bar{x}_i)^2 / df_2}$  $\frac{\text{Let}}{\text{technology}}$  $\frac{\text{take care of calculations}}{\text{calculations}}$ ANOVA for Regression:  $F = \frac{MSModel}{MSE} = \frac{\sum (\hat{y} - \bar{y})^2 / df_1}{\sum (y - \hat{y})^2 / df_2}$ 

#### **Example #1: Which Award?**

If you could win an Olympic Gold Medal, Academy Award, or Nobel Prize, which would you choose?

Do think the distributions will differ between male and female students?

|        | Olympic    | Academy   | Nobel     |       |
|--------|------------|-----------|-----------|-------|
| Male   | 109 (97.0) | 11 (16.5) | 73 (79.4) | 193   |
| Female | 73 (85.0)  | 20 (14.5) | 76 (69.6) | 169   |
|        | 182        | 31        | 149       | n=362 |

 $\chi^2 = 8.24$  Is that an unusually large value?

#### **Randomization for Awards**

- Shuffle 362 cards (193 male, 169 female)
- Randomly deal 182 cards to Olympic, 31 to Academy, and the remaining 149 to Nobel.
- Find the two-way table (Sex x Award) and compute  $\chi^2$ .
- Repeat 1,000's of times to get a distribution under the null.

Time for technology...



http://lock5stat.com/statkey



#### **Example #2: Sandwich Ants**

#### **Experiment**:

Place pieces of sandwich on the ground, count how many ants are attracted. Does it depend on filling?



Favourite Experiments: An Addendum to What is the Use of Experiments Conducted by Statistics Students? Margaret Mackisack http://www.amstat.org/publications/jse/v2n1/mackisack.supp.html

# **Randomization for Ants**

- Write the 24 ant counts on cards.
- Shuffle and deal 8 cards to each sandwich type.
- Construct the ANOVA table and find the F-statistic.
- Repeat 1,000's of times to get a distribution under the null.





#### **Example #3: Predicting NBA Wins**

Predictor: PtsFor (Points scored per game)



### **Randomization for NBA Wins**

- Put the 30 win values on cards.
- Shuffle and deal the cards to assign a number of Wins randomly to each team.
- Compute the F-statistic when predicting Wins by PtsFor based on the scrambled sample.
- Repeat 1,000's of times to get a distribution under the null.



#### **Example #4: Rock, Paper, Scissors**

Play best of three games each. Record counts for *all* choices.

| Rock           | Paper   | Scissors | Rock<br>beats scissors |
|----------------|---------|----------|------------------------|
| <b>65 (72)</b> | 67 (72) | 84 (72)  | <i>n</i> =216          |



Let  $p_1$ ,  $p_2$ ,  $p_3$  be the respective population proportions

 $H_0: p_1 = p_2 = p_3 = 1/3$   $H_a: Some \ p_i \neq 1/3$ Expected =  $np_i = 216 \cdot \frac{1}{3} = 72$  $\chi^2 = \frac{(65 - 72)^2}{72} + \frac{(67 - 72)^2}{72} + \frac{(84 - 72)^2}{72} = 3.03$ 

# **Randomization for RPS**

- Start with an equal number of Rock, Paper, and Scissor cards.
- Sample 216 times with replacement.
- Construct the table of counts and compute a chisquare statistic
- Repeat 1000's of times to get a distribution under  $H_0: p_1 = p_2 = p_3.$





#### What Statistic?

Chi-square for Association:

$$\chi^{2} = \sum \frac{(observed - expected)^{2}}{expected}$$

ANOVA for Means:  $F = \frac{MSG}{MSE} = \frac{\sum n_i (\bar{x}_i - \bar{x})^2 / df_1}{\sum (x - \bar{x}_i)^2 / df_2}$ ANOVA for Regression:  $F = \frac{MSModel}{MSE} = \frac{\sum (\hat{y} - \bar{y})^2 / df_1}{\sum (y - \hat{y})^2 / df_2}$ 

If we were ONLY using randomization, would we still use these?

#### What Statistic?

But StatKey doesn't do that statistic...

library(mosaic)
rand dist=do(5000)\*statistic(randomize(data))

SSqs=do(5000)\*anova(lm(sample(y)~x,data=db))

```
library(infer)
rand_dist <- data %>%
specify(y ~ x) %>%
hypothesize(null = "independence") %>%
generate(reps = 10000, type = "permute") %>%
calculate(stat = STATISTIC)
```

#### **Thank you!**

#### **QUESTIONS?**

Patti Frazer Lock: <u>plock@stlawu.edu</u> Robin Lock: <u>rlock@stlawu.edu</u> Kari Lock Morgan: <u>klm47@psu.edu</u>

Slides posted at www.lock5stat.com