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Paul J. Fields

Paul J. Fields

If you were flying along in a single-engine airplane and 
then the engine quit, I bet it would get your attention. 
You would probably wonder what you could do 

to increase your chances of safely getting back on the 
ground. Catherine Cavagnaro is an experienced pilot, 
a flight instructor, and a statistics professor. In our lead 
article, she shows how a matched-pairs t-test could help 
you know what to do. She explains how she designed 
and conducted an experiment to learn about the glide 
characteristics of her airplane. Then, using the matched-
pairs t-test, she found a result that might surprise you. It 
surprised me! She also asks us to test a claim by the aircraft 
manufacturer against the data from her experiment. See 
what you conclude when you do the test.

Speaking of t-tests, check out the first “Statistical 
Snapshot” in this issue. It asks: What does a t-test test?

 When you studied t-tests, you probably heard about 
that magic number, n = 30. Have you ever wondered 
what is so magic about n = 30, anyway? Well, STATS asked 
David Moore to tell us. 

He answered, and then graciously provided some 
questions (and answers) of his own. I am sure you 
will find his list of frequently asked questions a ready 
reference worth coming back to many times as you study 
and use statistics.

One of the questions in Moore’s FAQs is about 
outliers. There is a second “Statistical Snapshot” in this 
issue, and it looks at what we should do with outliers. 
Should we delete them? 

 Our feature article is by Milo Schield. He explores 
with us the mysteries of confounding and the possible 
paradoxical consequences due to lurking variables. He 
presents an illuminating graphical approach to seeing 
what is going on. Not only is his technique eye-opening, 
it’s also easy to use. Schield also gives us a problem to 
solve using his technique, so try it and then compare your 
answer to his.

 In “AP Statistics,” Peter Flanagan-Hyde discusses 
various types of observational studies and their 
importance in research. The role of observational studies 
can be misunderstood, and he helps us see how it all  
fits together. 

And since Cavagnaro started us off thinking about 
what is wise to do, consider “STATS Puzzler’s” Infinite 
Wisdom. See if you can solve this puzzle—I bet the 
solution will surprise you.

Have you ever wondered where random numbers 
originate? Out of a hat, maybe? Seriously, how can we 
get random numbers from nonrandom numbers? In Bruce 
Trumbo’s “R U Simulating?” column, we’re shown how. 
Try your numerical analysis skills on his challenges and I 
promise you will learn something new.

In “Statistical µ-sings,” Chris Olsen offers a salute  
to teachers and students of statistics. As this new 
school years gets under way, all of us at the American 
Statistical Association join him in his salute—keep up the  
great work! 
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On July 23, 1983, Air Canada Flight 143—a brand 
new Boeing 767—grew eerily quiet as it traveled 
above the Canadian countryside. In ordering fuel 

for the flight, the pilot had made a unit conversion error 
and, consequently, received an insufficient fuel supply. 
With no airport in the vicinity, the pilot directed his aircraft 
at a speed of 220 knots toward an abandoned airbase in 
Gimli, Manitoba, and braced for an emergency landing.

What can a pilot in command of such an unintentional 
glider do to reach the most forgiving terrain? Upon engine 
failure, a powered airplane does not just fall from the sky. 
Rather, the craft becomes a glider, albeit a rather inefficient 
one. To maximize the horizontal distance traveled, 
or “glide distance,” a pilot must use the cockpit yoke 
control to achieve the optimal airspeed. Furthermore, any 
reduction in the drag force that opposes motion through 
the air also will increase the glide distance. For example, 
the landing gear and the flaps should be retracted until 
needed for landing. But, what about the propeller on a 
propeller-driven airplane? Should the pilot let it spin freely 
or stop it from spinning?

Flying and Gliding 
First, let’s take a look at how an airplane flies. See 

Figure 1. Propeller-driven aircraft use an engine and 
rotating propeller to generate a thrust force parallel to the 
flight path that moves the wings through the air. Drag acts 
opposite to the thrust. As an airplane wing moves through 
the air, it creates a lift force perpendicular to the path of 
the airplane. Once the plane is airborne, thrust is not 

necessary to create the lift, but, in its absence or without 
an air current rising from below, the plane will descend 
necessarily as the weight force pulls it toward the Earth.

By Newton’s law of motion for straight, unaccelerated 
flight including climbs and descents, the lift, weight, 
thrust, and drag forces sum to zero. In straight and 
level flight, lift is approximately weight and thrust is 
approximately drag. With engine failure, as we see in 
Figure 2, the thrust goes to zero and the weight can be 
decomposed into the component that opposes drag, W 
sin , and that which opposes lift, W cos ,  where  
represents the glide angle or angle between the flight 
path and horizontal and W is the weight of the airplane. 
For small angles , we have that sin  is approximately  
 (denoted sin  ~  and cos  ~ 1). Letting L denote lift 

and D denote drag, then L ~ D,  ~ D/L, and any reduction 
in drag or drag to lift ratio will reduce the glide angle and 
extend the glide distance.

Suppose an airplane experiences an engine failure at 
height h feet above the ground, as in Figure 3. The airplane 
will glide toward the ground with an airspeed—the rate 
traveled along the glide path—governed by the yoke 
control in the cockpit. Pushing the yoke forward moves 
the nose down and increases the airspeed, and pulling 

Glide Testing:  

a Paired Samples Experiment

Cavagnaro

Figure 1. In level flight, the opposing forces of lift (L) and weight (W) 
and thrust (T) and drag (D) cancel each other. 

Figure 2. In gliding flight, with zero thrust in gliding flight, the 
components of weight parallel and perpendicular to the flight path 
oppose drag and lift, respectively.
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back affects the opposite. To increase the likelihood of 
reaching an airport or a suitable alternative place to land, 
the pilot needs to maximize the glide distance x. We 
can see that, again for small angles, ~ tan = h/x, so 
maximizing the glide ratio x/h involves maximizing the 
lift-to-drag ratio L  /D. For each aircraft at a specific weight, 
there is one airspeed, vbg, or best glide airspeed, that 
achieves this goal.

Although manufacturers of small, single-engine 
aircraft are, in fact, required to make this determination, 
the Code of Federal Regulations does not require that 

vbg be determined for transport category aircraft. Thus, 
the pilot of the “Gimli Glider,” as it is now called, had 
to take a guess that the best glide airspeed for a Boeing 
767 is 220 knots.

Stopping the Propeller 
Besides holding the yoke to achieve the best glide 

airspeed, is there anything else a pilot can do to extend 
the glide? Reducing the drag force can help. Upon 
engine failure in a propeller-driven aircraft, the propeller 
will continue to turn, or “windmill,” as air passes over 
it. Aviation literature has long reported that drag from 
this turning propeller is responsible for a considerable 
decrease in performance. In fact, twin-engine aircraft 
are equipped with a mechanism to stop the propeller of 
an inoperative engine. Although single-engine aircraft 
are not designed with such capability, it’s reasonable 
to expect that drag reduction from a stopped propeller 
will increase the horizontal distance achieved per unit of 
altitude loss – the glide ratio. For single-engine airplanes, 
the glide ratio is approximately 10:1. Any increase in this 
ratio offers an unfortunate pilot beset with engine failure 
a greater likelihood of reaching an airport or terrain 
suitable for an emergency landing. By pulling the yoke 
control back, the pilot can force the propeller to stop by 
slowing the airflow over it. Once it has stopped, internal 
engine friction guarantees that only speeds much higher 
than vbg will allow it to turn once more.

How much will glide ratio increase with a stopped 
propeller? Although Cessna Aircraft reputedly witnessed 
a 20% increase in the two-seat 150 model and the same 
for the four-seat Cessna 172, we found little information 
on the tests. Barry Schiff reports an increase in glide 
ratio in a test he conducted using the four-seat Cessna 
182 in his AOPA Pilot article, “Stopping the Propeller: 
Buying the Most Distance When the Engine Quits.”

To estimate the impact of the drag associated with 
a windmilling propeller, we planned 25 test flights 
in a 1979 two-seat Cessna 152, the successor to the 

150 model, at Franklin County Airport, 
Sewanee, Tennessee. Sewanee is located 
on the edge of the Cumberland Plateau 
in southeast Tennessee. We selected 
days with calm winds so disturbances 
caused when higher winds meet the 
plateau were minimized. A matched-pairs 
experimental design held the promise 
of minimizing the effects of these and 
other atmospheric phenomena, assuming 
conditions would not vary too much for 
consecutive runs. 

Don’t Try This at Home
Stopping the propeller of a single-engine airplane is 

not for the faint of heart. In our tests, with the throttle 
closed and the plane’s nose held high, the airframe of the 
Cessna 152 shuddered as its once invisible propeller was 
coaxed to a halt. The airspeed at which this is possible 
is much lower than the best glide airspeed, and is close 
to the airspeed at which a plane does, in fact, fall from 
the sky. After the propeller came to a halt, the nose was 
lowered to achieve the desired airspeed. After the test 
glide was completed, we lowered the nose to achieve 
an airspeed sufficient to start the propeller turning again. 
Pilots wishing to experience such a flight condition should 
attempt the procedure only with an instructor who has 
such experience in that make and model of aircraft.

The Test 
Glide distance in a no-wind situation can be shown 

to be proportional to the time spent in the descent. 
Therefore, the test compares the difference in time to 
descend in the two conditions. We climbed above 8,000 
feet mean sea level (MSL), stabilized at the best glide 
airspeed of 60 knots with the propeller either windmilling 
or stopped, and recorded the time to descend to 7,200 
feet MSL. We then repeated the glide with the propeller 
in the other condition. The order that the propeller was 
either windmilling or stopped was randomized. Blinding 
was not possible in our experiment, as it is impossible 
to keep that condition from the pilot because a stopped 
propeller is difficult to ignore and results in an airplane 
that is uncharacteristically quiet. The times for 27 paired 
trials are shown in Table 1. 

Figure 3: To maximize the glide ratio x/h, maximize the lift-to-drag 
ratio L/D.
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Figure 5. Histogram of glide time differences after removing trial 14
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Table 1. Glide Times for 27 Trials and Their Paired  
Differences for all 27 trials

Figure 4. Histogram of glide time differences for all 27 trials

t-Test : Paired Two Sample for Means   

  Stopped Windmilling 
Mean 77.44 71.52 

Variance 24.12 25.62 

Observations 26 26 

Hypothesized Mean Difference 0   

df  25   

t Stat 5.49426   

one-tail probability 0.0000052   

t Critical one-tail  1.70814   
 

Table 2. Data Analysis of Means for Paired Samples  
Using  Microsoft Excel

Data Analysis 
Figure 4 shows the frequency of the difference in 

times for each pair of trials. We can see that trial 14 
constitutes a distinct outlier. We knew something was 
amiss when we stopped the propeller and glided down 
800 feet in almost three minutes, more than twice the 
usual time. Whether the cause was an unusual updraft 
from wind hitting the plateau below us or a giant hand 
holding us up, we wish such good luck on any pilot 
unfortunate enough to experience a genuine engine-out 
condition. 

Judging trial 14 to be due to abnormal conditions 
and, thus, a nonrepresentative event, we can 
remove it from the data. Then, the data appear to be 
roughly symmetric with no obvious outliers, so using  
t-procedures is justified (see Figure 5).

Our null hypothesis is that the true mean 
difference in times to descend 800 feet (stopped minus 
windmilling) is zero versus the alternative that the 
difference is positive. Using Microsoft Excel’s paired  
t-test procedure, Table 2 shows that a miniscule  
p-value of approximately 0.0000052 allows us to reject 
the null hypothesis and conclude that the airplane 
we tested will glide farther with a stopped propeller 
following engine failure. 

In our test, the mean increase in flight time 
was 5.9 seconds. A 95% confidence interval for the 
difference in seconds is [3.7, 8.1]. In this test, we 
therefore witnessed an increase in the mean glide 
distance of approximately 8.3%, as glide distance is 
proportional to time of decent.
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As one step in making a new drug, a pharmaceutical 
company uses micro-organisms to produce batches 
of a protein. The target yield of such batches is  

0 = 100. It is a problem if is either too small or  
too large. We want to know if the target yield is  
being achieved.

With observed yields from n = 10 batches, we use 
the standard t-test of H0:  = 100 against HA:  100 at the 
5% level, rejecting H0 if the absolute value of

 

exceeds 2.262. Assuming 0 = 100, for what values of the 
sample mean X and standard deviation S is H0 rejected? 
You might suppose we reject mainly when a sample 
happens to have ‘too large’ a value of  X – 0 . 

Figure 1 plots S against  X for 10,000 simulated 
samples of size 10 from a normal population with =100 
and  = 10, emphasizing (by darker dots) the roughly 500 
samples for which H0 is wrongly rejected. Figure 1 shows 
that values of S that are too small can play an important 
role in incorrect rejection. By ‘too small,’ we are saying  
the sample standard deviation is less than the population 
standard deviation, when we are assuming they  
are equal.

An important fact about normal data is that X 
and S are independent. In the same figure, the cloud 
of all 10,000 simulated points illustrates this principle. 
There is no clear pattern of association between X 
and S. Also, their correlation is 0 within the accuracy of  
the simulation.

Try This at Home
Use the data above to see if the difference we 

witnessed in the Cessna 152 is consistent with the 20% 
that was reported for other Cessna aircraft. After you 
have done your analysis, compare your results to our 
analysis on Page 13. 

Conclusion
So, when the engine quits, stop that prop! We 

have found highly persuasive evidence that stopping 
the propeller does improve glide performance and 
the pilot of a propeller-driven aircraft may want to 
consider this prospect if altitude and experience 
permit. Incidentally, our experimental results in a 
Cessna 152 are consistent with trials conducted in 
the author’s 1973 Piper Cherokee 140.  

The captain of Flight 143, an experienced glider 
and aerobatic instructor, atoned for his mathematical 
slip by executing a successful emergency landing at 
Manitoba’s air base. On the Gimli Glider, windmilling 
turbine fans in the jet engines—similar to propellers—
created drag that hindered the plane’s glide 
performance. Perhaps a fan-stopping mechanism 
on jet engines is in order. Fortunately, engine failure 
incidents, like those resulting from fuel exhaustion, 
are exceedingly rare in commercial aviation. Still, 
information on best glide airspeed and procedures 
that minimize drag would have been useful to the 
pilot of the Gimli Glider, or any other pilot in such 
unfortunate circumstances.  

Editor’s Note: The author would like to thank 
William K. Kershner, who provided the Cessna 152 
and the idea for the test. These results appear in his 
book, The Flight Instructor’s Manual.

Additional Reading
Federal Aviation Administration. (2005). Code of 
Federal Regulations, Title 14: Aeronautics and Space. 
Available at http://faa.gov/regulations_policies.

Kershner, William K. (2002). The Flight Instructor’s 
Manual (4th ed.). Blackwell Publishing.

Schiff, Barry. (1995). “Stopping the Propeller: Buying 
the Most Distance When the Engine Quits.” AOPA 
Pilot, Aircraft Owners and Pilots Association.

Catherine Cavagnaro, ccavagna@sewanee.edu, is 
an associate professor of mathematics at the University 
of the South in Sewanee, Tennessee, who enjoys 
teaching elementary statistics. She is also a flight 
instructor who specializes in aerobatics and spin 
training at the Franklin County Airport.
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Figure 2. Sampling with a sample size of 10 from a normal 
distribution with  = 110 and  = 10 and testing H0:  = 100 
against HA:   100 when the null hypothesis is false, the dark 
dots show samples that reject H0 and the pale dots show samples 
that do not reject H0.

Figure 3. Sampling with a sample size of 10 from an exponential 
distribution with =100 and =100 and testing H0:  =100 
against HA:  100 when the null hypothesis is true but the sampled 
population is non-normal, the dark dots show samples that reject H0 
and the pale dots show samples that do not reject H0.

In monitoring the pharmaceutical production of 
protein, it is especially important to know if the actual 
value of the population mean  differs from 100 by more 
than 10. What are the chances of rejecting H0 when  
 = 110?

To investigate this, we simulate 10,000 samples of 
size 10 from a normal distribution with =  110 and  
 = 10. The results, displayed in Figure 2, show that the 

power of the t-test in this situation is 80%—when 110 is 
the true population mean, about 8,000 of the samples 
rejected H0.

Figure 1. Sampling with a sample size of 10 from a normal 
distribution with  =100 and = 10 and testing H0:  = 100 against  
HA: 100 when the null hypothesis is true, the dark dots show 
samples that reject H0 and the pale dots show samples that do not 
reject H0.

STATISTICAL  SN
A

PSHOT

Here again, the size of S is as important as that of  
 X  – 0. In Figure 2, some rejecting samples (dark dots) 

with small values of S had  X   around 105, and some not 
rejecting ones (pale dots) with large sample standard 
deviations had sample means around 110.

By commonly accepted standards of judging tests, the 
t-test is the best for normal data when both parameters 
are unknown. We are just seeing the consequences of 
testing hypotheses about  when  is unknown. (If  was 
known and the z-test was used to test H0, the dividing 
lines between dots rejecting and not rejecting would be 
vertical, instead of diagonal, as in our figures.)

For data from a non-normal population, if we use 
the t-test, the probability of rejection will not be the 
-value specified in the test. For one reason,  X   and S 

may no longer be independent. As an extreme example, 
Figure 3 shows what happens if we draw samples of 
size 10 from an exponential population with  = 100 
and, thus, necessarily  = 100. The true significance 

level of the t-test with critical value 2.262 is only about 
10%, instead of 5%. Moreover, the power of this test (not 
shown), when  = 110, is only about 15%.

So, the t-test is not purely a test of whether  
H0 : = 0 is true. The results of the t-test can be affected 
by a sample standard deviation that underestimates  
the population standard deviation and by departures 
from normality. 
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ASK STATS

Jackie Miller

...and Other Frequently Asked Questions

We asked David Moore, renowned educator and 
author, a couple of burning questions about statistics. He 
responded in grand style.

1. Why is n = 30 the magic number for switching 
from t to z in inference about a single mean?

It isn’t. There is no magic number. The distinction 
between z and t procedures for a mean has nothing to 
do with sample size. Use z if you know the population 
standard deviation (  ), and use t if you don’t. You almost 
never know , so you should simply always use t.

Of course, the t distributions approach standard 
normal as the degrees of freedom increase, so inference 
from z becomes a better approximation to inference 
from t as the sample size increases. In the dark ages, 
when we used tables with one line for each sample 
size, about 30 lines would fit on a page. So, after n = 30, 
we were advised to switch from exact t to approximate 
z. This last made sense when we last used a table to 
compute square roots.

2. Well, then, is n = 30 the magic number for safe 
use of t for nonnormal data?

No. There is no magic number. Inference based on 
t, and inference about means in general, is reasonably 
robust against lack of normality. That’s why various  
t statistics, one-way ANOVA, and the like are useful in 

David Moore

Jackie Miller (miller.203@osu.edu) is a Statistics 
Education Specialist and auxiliary faculty member in the 
Department of Statistics at The Ohio State University. She 
earned both a BA and BS in mathematics and statistics 
at Miami University, along with an MS in statistics and a 
PhD in statistics education from The Ohio State University. 
She is very involved in the statistics education community. 
When not at school, Miller enjoys a regular life (despite 
what her students might think), including keeping up with 
her many dogs! 



practice. For a given nonnormal population distribution, 
accuracy of t inference does improve with n. But a one-
sample t-test is more robust against nonnormality when 
the true distribution is approximately symmetric than 
for skewed distributions. That’s why there is no overall 
magic number. For roughly symmetric distributions, I find 
the t-test strikingly robust, so that n = 15 is adequate for 
practical conclusions.

Three codas to this, minor FAQs in themselves. First, 
inference about spread for normal populations (such 
as the F-test for comparing variances) is notoriously 
sensitive to nonnormality. I think these procedures 
should never be used. This is a place to start learning 
about permutation tests and bootstrap confidence 
intervals, which aren’t based on a specific form for 
the population distribution. Second, if you have these 
resampling procedures in your software, you can 
routinely check the robustness of t by comparing  
p-values or confidence intervals. I do this, and t is 
pretty impressive. Third, the variable robustness of t to 
varied forms of nonnormality reminds us why a normal 
quantile plot is much more helpful than any formal test 
of normality: The plot shows how the data deviate from 
normality. What you want normality for is as important 
as how nonnormal the data are. A p-value for a test of 
normality doesn’t answer the question, “Are these data 
normal enough for my purposes?”

3. You say just always use t for inference about 
the mean of a roughly normal population. So why 
does z for means still appear in texts?

A text has to start at the beginning: What is the 
basic reasoning of inference? What specific procedures 
operationalize this reasoning? What are the practical 

barriers to effective use of these procedures? Starting at 
the beginning, how shall we introduce beginners to the 
reasoning of inference? This is a pedagogical issue, not a 
question of statistics in practice. Some teachers may prefer 
to start with rank tests (but discrete sampling distributions 
are awkward and the corresponding confidence intervals 
are more so). Sometime in the golden future, we will 
start with resampling methods. I think permutation tests 
make the reasoning of tests clearer than any traditional 
approach. For now, the main choices are z for a mean and 
z for a proportion.

I find z for means quite a bit more accessible to 
students. Positively, we can say up front that we are 
going to explore the reasoning of inference in an overly 
simple setting. Remember, an exactly normal population 
and a true simple random sample (SRS) are as unrealistic 
as known . All the issues of practice—robustness 
against lack of normality, application when the data 
aren’t an SRS—are put off until, with the reasoning 
already in hand, we discuss the practically useful  
t procedures. This separation of initial reasoning from 
messier practice works well.

Negatively, starting with inference for proportions 
introduces many side issues: (1) No exact normal 
sampling distribution, but a normal approximation to a 
discrete distribution; (2) use of p̂, both in the numerator 
and denominator of the test statistic, to estimate both 
the parameter p and p̂’s own standard deviation;  
and (3) loss of the direct link between test and 
confidence interval.

Once upon a time, we had at least the compensation 
of developing practically useful procedures. Now, the 
often gross inaccuracy of the traditional z confidence 
interval for p is better understood. It is hard to abandon 
old friends, but I think a look at the graphs in Section 2 
of the paper by Brown, Cai, and DasGupta in the May 
2001 issue of Statistical Science is both distressing and 
persuasive. (See also the article “How Much Confidence 
Should You Have in Binomial Confidence Intervals” 
by Seuss et al. in the Spring 2006 issue of STATS). The 
standard intervals often have a true confidence level 
much less than what was requested, and requiring large 
samples encounters a maze of ‘lucky’ and ‘unlucky’ 
sample sizes until very large samples are reached. There 
are countermeasures, but this is exactly the kind of 
practical difficulty we should avoid when beginning to 
teach the reasoning of inference.

4. Where did the popular significance level of 
0.05 come from?

From the master, himself, R. A. Fisher:

 ...it is convenient to draw the line at about 
the level at which we can say: Either there is 
something in the treatment, or a coincidence 
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has occurred such as does not occur more than 
once in twenty trials. ...If one in twenty does not 
seem high enough odds, we may, if we prefer 
it, draw the line at one in fifty (the two percent 
point) or one in a hundred (the one percent 
point). Personally, the writer prefers to set a 
low standard of significance at the five percent 
point, and ignore entirely all results which 
fail to reach that level. A scientific fact should 
be regarded as experimentally established 
only if a properly designed experiment rarely 
fails to give this level of significance. (“The 
Arrangement of Field Experiments,” Journal 
of the Ministry of Agriculture of Great Britain, 
(1926) 33: 504.)

Of course, reading his writings more extensively, 
Fisher was not an advocate of blind use of significance 
at the 5% level as a yes-or-no criterion. And he was 
writing before fast and cheap computing made actual 
p-values immediately available. Never forget that, in 
practical settings, there is no meaningful difference 
between p = 0.049 and p = 0.051. So “ignore entirely” 
is lousy advice, even if it did come from Fisher.

5. I have trouble deciding when an observation 
is an outlier. Can I just use the 1.5 × IQR 
criterion as a rule?

Outliers are observations that “seem to stand apart” 
from the overall distribution and, therefore, deserve to 
be investigated. “Standing apart” is a matter for judgment. 
Although students would like a recipe for what makes an 
outlier, there is none. One sometimes sees rules based 
on standard scores, such as |Z| > 2. These are flatly 
wrong. They confuse the most extreme observations in a 
distribution with outliers, saying for example that the most 
extreme 5% in a normal distribution are always outliers. 

Mainly, the 1.5 × IQR criterion is intended for automatic 
searching and plotting—it identifies only “suspected 
outliers.” You can calculate that, for normal distributions, 
the 1.5 × IQR criterion flags observations more than about 
2.7 standard deviations from the mean. But this misses the 
point: The standard deviation is not a suitable descriptive 
measure of spread for skewed distributions. Because the 
two tails have different spreads, no one number can do a 
good job. IQR describes the spread of the middle half of 
the data, so the 1.5 × IQR criterion looks at the position of 
extreme observations relative to the spread of the center 
part of the distribution. That’s why we use this criterion, 
rather than one based on the standard deviation.

Nonetheless, 1.5 × IQR can point to observations 
that are not outliers. This happens, for example, in a 
distribution with a quite compact and symmetric center 
half but a long tail. It remains a matter of judgment 
whether an observation is an outlier or just the largest or 
smallest in a long-tailed distribution. Basically, if it doesn’t 
jump out at you, it isn’t an outlier. Students need to learn 

to see the big effects: major peaks in a distribution, rather 
than minor ups and downs in a histogram; clear skewness, 
rather than slight imbalance between the two sides of 
a distribution; and serious outliers, rather than just the 
largest and smallest observations. 

6. Excel’s Data Analysis menu offers both “t-Test: 
Two-Sample Assuming Equal Variances” and “t-
Test: Two-Sample Assuming Unequal Variances.” 
How do I decide which to use?

Excel isn’t the only offender here, but the wording 
“Assuming Unequal Variances” is seriously misleading. 
There’s an outdated version of the two-sample t-test that 
does assume equal variances. You should never use it, 
in part because it’s very hard to know if the population 
variances are equal. Most statistical software packages 
have an accurate approximation that works very well 
whether or not the population variances are, in fact, equal. 
That is, it doesn’t assume anything about variances. Good 
software should use this version by default, usually with 
an option to assume that the variances are equal. If your 
technology offers an equal/unequal choice, just choose 
unequal.

7. I saw an examination item that asked for the 
primary purpose of blocking. Two of the choices 
given were “reduce variation” (correct) and 
“reduce confounding” (not correct). I thought 
we formed blocks to reduce the effect of lurking 
variables. So doesn’t this reduce confounding?

Consider an experiment comparing two treatments 
for a “Dread Disease.” A completely randomized design 
assigns subjects at random to two groups. Suppose 
now that women and men differ systematically in their 
response to the two treatments. This systematic difference 
increases the variation of responses in both treatment 
groups, making it harder to assess overall differences 
in the mean responses to the treatments. There is, 
however, no confounding of gender with treatment 
because randomization will (on average, given enough 
subjects) balance the groups in gender.

A randomized block design separately randomizes 
women and men, allowing direct comparison of the 
two treatments for each gender separately. The variation 
in responses in each block is less than before. Thus, 
blocking reduces variation by dealing with a specific 
cause of variation systematically, rather than leaving it to 
randomization.

That’s an adequate explanation at the level of 
introductory statistics, where we treat confounding 
conceptually, rather than attempting a formal definition. 
At a more advanced level, we would try to distinguish 
confounding from interaction (there is an interaction 
between gender and treatment because the difference in 
the mean response to the two treatments changes with 
gender). This can get subtle, and, by some standards, 
we might say that both confounding and interaction are 
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trend is the movement of statistics somewhat away 
from mathematics (though you can still never know 
too much mathematics) back toward its roots in data 
analysis and scientific inference. Fast and cheap 
computing is again a driving force. We see much more 
clearly now that formal probability-based inference, 
though important, has a more restricted domain of use 
than data analysis based on data graphics and effective 
summaries. For very large datasets, this also means 
“based on good algorithms.” The computer science 
aspect of statistics will become more important.

11. What do you find to be exciting new areas 
of statistics that will be “hot topics” in the 
near future?

I’ve mentioned the interplay between statistics and 
computer science. My perception of “most important 
trend” implies that the most exciting new areas will be 
just that: effective application of statistical ideas and tools 
to new scientific problems. Think of the explosion of 
statistical applications in molecular biology, genomics, 
and proteomics. New applications will, as in this 
example, drive development of new techniques. It’s a 
great time to be a statistician. 

About David Moore: Moore is Shanti S. Gupta 
Distinguished Professor of Statistics, emeritus, at 
Purdue University. He received his AB from Princeton 
(1962) and PhD from Cornell (1967), both in 
mathematics. He has written many research papers 
in statistical theory and served on the editorial boards 
of the Journal of the American Statistical Association, 
Technometrics, the International Statistical Review, 
and the Journal of Statistics Education. Moore served 
as program director for statistics and probability at 
the National Science Foundation, as a member of the 
National Research Council’s Committee on Applied 
and Theoretical Statistics, and as a member of the 
oversight committee for NRC’s Mathematical Sciences 
in the Year 2000 project. He was president of the 
American Statistical Association in 1998.

In recent years, Moore has devoted his attention 
to the teaching of statistics. He was the content 
developer for the Annenberg/Corporation for Public 
Broadcasting college-level telecourse, “Against All 
Odds: Inside Statistics,” and other video series. He 
also is the author of influential articles on statistics 
education and of several leading texts, including the 
immensely popular The Basic Practice of Statistics, 
now in its fourth edition. Moore has served as the first 
president of the International Association for Statistical 
Education and as a member of the National Research 
Council’s Mathematical Sciences Education Board. 
He also has received the Mathematical Association of 
America’s national award for distinguished college or 
university teaching of mathematics.

present in this example when we do not block. This does 
not change the fact that the main purpose of blocking is 
generally to reduce variation by removing the systematic 
effect of the blocking variable.

8. I read that “regression to the mean” describes 
why students who do well on a midterm exam 
tend to do less well on the final. I looked at the 
algebra and found this is only true if the slope 
of the regression line is less than 1.

That’s almost right. The slope of the least-squares line is 
b = r  sy / sx  . So if the two exams have the same scale and 
the same spread of scores, the slope is r and is less than 1. 
But suppose, for example, that the midterm has a 0 to 50 
scale and the final a 0 to 100 scale. We don’t expect “do less 
well on the final” to hold in points. Instead, it holds in the 
standard scale: The final score will (on the average) be fewer 
standard deviations above the mean than the midterm score. 
This also adjusts for exams on the same scale, say 0 to 100, 
that differ greatly in difficulty.

9. I see examples of significance tests apparently 
applied to entire populations. Doesn’t inference 
draw conclusions about a population on the basis 
of sample data?

This is a bit subtle. Confidence intervals do not make 
sense if we have data on an entire population. If we 
have the salaries of all full professors, for example, we 
know the population mean and have no need to estimate 
it. But tests do make sense. We can ask whether the 
difference between the mean salaries of female and male 
full professors is statistically significant. That is, is it so 
large that it would rarely occur just by chance? Here’s one 
way to do it. Start with the given set of salaries. If there’s 
no gender effect, any salary is equally likely to belong 
to a man or a woman. So look at all possible random 
assignments of the salaries to the professors and see how 
often the mean male-female difference is as large as that 
actually observed. This gives the p-value for a permutation 
test of the null hypothesis of no gender effect. The t-test, 
by the way, is an approximation to this result, so, in 
practice, we often just use the t-test on the population of 
all salaries.

10. What’s the most exciting discovery in 
statistics that you have experienced in  
your career?

That’s easy: resampling procedures—bootstrap 
confidence intervals and permutation tests—made practical 
by very cheap and very fast computing. These already 
have appeared in several of my responses above. As 
understanding and use spreads, they will replace much 
of the inference now taught in introductory statistics 
courses.

By the way, “most important discovery” is not the 
same as “most important trend.” The most important 
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Should Outliers 

Be Deleted?

An “outlier” is a value that appears to lie an unusual 
distance away from the rest of the observations. 
To put this definition into practice, we need a way 

to say whether a particular observation is unusual. One 
way to look for outliers is with boxplots.

Boxplots use the five-number summary of a 
sample: minimum (Q0), lower quartile (Q1), median 
(Q2), upper quartile (Q3), and maximum (Q4). The 
box of the boxplot extends from Q1 to Q3, so its length 
is the interquartile range IQR = Q3 – Q1 of the data. 
Many statistical computer packages use the “IQR x 1.5” 
rule to identify outliers. Boundaries (sometimes called 
lower and upper fences) are established at the points  
L = Q1 – 1.5 x IQR and U = Q3 + 1.5 x IQR. Any point 
outside the interval from L to U is designated as a 
possible outlier.

Figure 1 on the following page shows the boxplots 
of four datasets, the first three of which show at least one 
outlier. The stripchart at the right of each boxplot shows 
the actual data values. The upper fence, U, is shown 
explicitly by a dotted line in each of the three boxplots 
that show the possible outliers in the upper tail.

Analysts often wonder what to do with outliers. 
Should they be deleted? Should they be ignored? Do 
they represent an error that needs to be corrected? Or, 
are they just extreme, but correct, values? Reasonable 
answers to these questions always depend on the 
specific situation. Each of the boxplots in Figure 1 has its 
own story and its own answers to these questions.
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The first boxplot 
shows magnitudes for 
51 earthquakes that 
occurred in California 
on September 3, 
2000. Most of these 
earthquakes were 
so small they could 
be detected only by 
delicate equipment, 
but the three outliers 
were strong enough to 
be noticed by people 
nearby. The largest 
one, of magnitude 5.2, 
was a major quake. 
Occurring in the Napa Valley, it injured about 25 
people and caused about $50 million in damage, much 
of that to wineries and storehouses of fine wines. With 
earthquakes, only the outliers are of any interest to 
the general public, and only the most extreme outliers 
cause any damage. Certainly, a statistician dealing 
with earthquake data would be foolish to delete these 
outliers.

Another situation where outliers are not to be 
deleted or ignored occurs in the biotech industry 
where there can be a lot of background noise in the 
measurements. Here, the only measurements that give 
useful results are the outliers.
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The fourth boxplot illustrates the number of minutes 
a student waited for a commuter train on 20 trips in a 
particular month. Although the campus shuttle bus runs 
irregularly, the commuter trains run on a more controlled 
schedule. Essentially, possible waiting times for the 
commuter train are 
uniformly distributed 
in the interval from 
zero to 15 minutes. 
It would be rare to 
see any outliers in 
data from a uniform 
distribution, and we 
see none here.

So, we see that 
outliers may be caused 
by errors or may be 
an expected property 
of the kind of data at 
hand. Sometimes, it is 
appropriate to delete 
an outlier before data 
analysis, but often it is 
not. In any case, if we 
delete an outlier, we need to have a good reason for 
doing so and we need to document it in the report that 
goes with the data analysis.  

Answer from Page 6 
Try This at Home 

Remember that the mean increase in mean flight 
time was 5.9 seconds, and the mean flight time with 
windmilling was 71.5 seconds. Remember also that glide 
distance is proportional to time of decent, so the mean 
percentage increase in glide distance is approximately 5.9 
seconds / 71.5 seconds = 8.3%.

Now, since the 95% confidence interval is from 3.7 
to 8.1 seconds, the 95% confidence interval for glide 
distance can be approximated as 3.7 / 71.5 to 8.1 / 71.5, 
which gives 5.2% to 11.4%. Therefore, we can state with 
95% confidence that the claim of an increase of 20% is 
inconsistent with the observed data, as 20% does not lie 
within the 95% confidence interval. We conclude that the 
increase is not as great as 20%.

The second boxplot 
shows IQ scores recorded 
for a sample of 31 high 
school students. In this 
case, the maximum value 
198 is an outlier. The 
researchers recognized 
instantly that this is 
an absurd IQ value. 
Fortunately, the original 
test sheets were still 
available, so they were 
able to find that one 
score of 98 had been 
typed incorrectly as 198 
and ‘clean’ the data. This 
is an example of the 
identification of an outlier 
giving researchers warning to correct an error before 
doing further data analysis. If the original test sheets 

were no longer available, 
the researchers would not 
have known what to do 
with the outlier—delete 
it, ignore it, or correct it.

The third boxplot 
represents reaction times 
for a student participating in 
a psychology experiment. 
Reaction times distributions 
often are strongly skewed 
toward higher values. In 
this case, the subject was 
supposed to push a button 
as quickly as possible after 
seeing a visual cue on 
a monitor. A blink of an 

eye, or momentary inattention, can cause an unusually 
long reaction time. Such data almost always show 
outliers. Typically in this situation, researcher should 
take repeated measurements and use the median to 
summarize the results. In this way, the data will be less 
sensitive to the occurrence of outliers.

Figure 1: Four boxplots are shown of real data from earthquakes, student IQ tests, reaction times in a psychological experiment, and commuter 
waiting times. Possible outliers are indicated above the dotted line drawn 1.5 x IQR from the box.



  FALL 2006

Did you know the United States has a higher 
death rate than Mexico? It’s a fact. In 2003, the 
death rate was 80% higher in the United States 

than in Mexico (8.4 per 100,000 compared to 4.7 per 
100,000).

What does this statistic mean? Does Mexico have 
better health care than the United States? That seems 
unlikely. Yet it is difficult to claim that this unexpected 
result is due to chance, error, or bias. The populations 
being studied are large, and death is definite, therefore 
usually counted accurately. You may be perplexed 
further when you learn that death rates are even lower 
in Ecuador and Saudi Arabia (4.3 per 100,000 and 2.7 
per 100,000). 

A possible explanation is confounding: “a situation 
in which the effects of two processes are not separated,” 
according to John M. Last’s A Dictionary of Epidemiology. 
Confounding can be due to a lurking variable. Often 
referred to as a confounder, Last says a lurking variable 
“can cause or prevent the outcome of interest ... and [is] 
associated with the factor under investigation.”

 Lurking variables are called “lurking” because they 
are not recognized by the researcher as playing a role in 
the study. Although they can influence the outcome of 
the process being studied, their effect is mixed in with 
the effects from other variables. 

In comparing the death rates in the United States 
and Mexico, a lurking variable may be the difference 
in the age distributions within each population. Mexico 
has a much younger population than the United States. 
In 2003, there were 59% more people under 15 in 
Mexico than in the United States (32% of the Mexican 
population, compared to 21% of the United States 
population). In addition, there were more than twice 
as many people 65 or older in the United States as in 
Mexico (12% compared to 5%).

It’s a fact that older people are much more likely 
to die than younger people. Unless we take age into 
account, a comparison of the crude (not accounting 
for age) death rates may be misleading. Mexico’s 
comparatively low death rate is more likely due to 
its youthful population, rather than to its health care 
system.

 So how can we untangle this confusion? How can 
we take into account the influence of a lurking variable 
that confounds an association?

Standardizing
Standardization is used in demography to ‘take into 

account’ the distribution of ages within a population. It 
can take into account the influence of a related factor 

BEWARE the
LURKING 
Variable!
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when comparing ratios for two groups so we are not 
comparing “apples to oranges.” When the death rates 
of Mexico and the United States are standardized for 
age, the death rate in Mexico is higher than that in the 
United States.

Standardization also can take into account the 
influence of a related factor when comparing ratios 
over time for the same group. For example, according 
to the 2001 United States Statistical Abstract, the crude 
death rate due to pneumonia was 7.4% higher in 1996 
than in 1990 (33.4 per 100,000 compared to 31.1 per 
100,000). But when standardized on the 1940 United 
States population distribution, the age-adjusted death 
rate due to pneumonia was 5.1% lower in 1996 than in 
1990 (13.0 per 100,000 compared to 13.7 per 100,000). 
In this case, standardizing actually reversed the direction 
of the association.

Standardizing Ratios Graphically
To ‘see’ standardization, it would be nice to have 

a simple technique—ideally graphical—that will take 
into account or ‘adjust for’ the influence of a lurking 
variable. 

In an article that appeared in The Roles of 
Representation in School Mathematics, Lawrence Lesser 
featured a graphical technique for showing how an 
association can be influenced when the lurking variable 
has just two values. The graph shows how a weighted 
average can be obtained easily without algebra. Howard 
Wainer did the same in a 2002 CHANCE article, 
“The BK-Plot: Making Simpson’s Paradox Clear to the 
Masses.” Milo Schield used this technique to illustrate 
standardization in “Three Graphs To Promote Statistical 
Literacy,” presented at the 2004 International Congress 
on Mathematical Education. To see how it works, let’s 
consider some examples. 

Patient C ondition  Death 
Rate G ood Poor A ll  
Rural  2.0 %  7.0 %  3.5%  
City  1.0 %  6.0 %  5.5%  
All  1.5%  6.5%   

Patient Condition   Number  of  
Patients  Good Poor All 
Rural  700    300 1,000 
City  100    900 1,000 
All  800 1,200 2,000 

Table 2. Number of Patients by Hospital and by Condition

BEWARE the
LURKING 
Variable!

Patient Death Rates by Hospital
Table 1 and Table 2 present the underlying data 

(hypothetical) for two hospitals: Rural Hospital and 
City Hospital. Patients in good condition can walk in; 
patients in poor condition are carried in. 

Table 1. Death Rates of Patients by Hospital and by Condition

We want to analyze the association between hospital 
(predictor) and death rate (outcome). First, we plot the 
data from Table 1 in Figure 1. City Hospital has a death 
rate of 6% for patients in poor condition and 1% for 
patients in good condition. Connecting these data values 
gives the heavy dashed line. Rural Hospital has a death 
rate of 7% for patients in poor condition and 2% for 
patients in good condition. Connecting these data points 
gives the light dashed line. 

From Table 2, we can see that 90% of the patients 
in City Hospital are in poor condition, while only 30% 
of those at Rural Hospital are in poor condition. Plotting 
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goal is for each group (exposure and control) to have 
the same percentage of confounder as found in the 
overall population. 

Standardizing the mix in both groups at 60% 
increases the expected death rate at Rural Hospital and 
decreases it at City Hospital, as shown in Figure 2. The 
standardized death rate is lower for City Hospital than 
for Rural Hospital (4% compared to 5%). In this case, the 
direction of the association between the standardized 
rates is the reverse of that between the crude rates—and 
we have a fair comparison of the two hospitals; we are 
comparing “apples and apples.” 

Family Incomes by Race
Here is another case. Suppose that in the United 

States in 1994, mean family income was 66% more for 
whites than for blacks ($54,500 compared to $32,900, 
as estimated based on the United States Statistical 
Abstract). (See Table 3) Is the black-white income gap 
fully explained by only race? The $21,600 white-black 
income gap could be confounded by a related factor: 
family structure.

US Family Income by Race & Structure
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 Figure 3. Hospital death rates standardized based on patient 
condition

Head of F amily   Family  
I ncome Unmarried Married All 
White  $26,700 $60,600 $54,500 
Black  $14,000 $53,900 $32,900 
All  $23,000 $60,100 $51,900 
 

Table 3. Estimated Family Incomes by Race and Family Structure

these percentages in Figure 1 gives the death rates at 
City Hospital and Rural Hospital.

The death rate is much higher at City Hospital 
(5.5%) than at Rural Hospital (3.5%). Based on this, Rural 
Hospital would seem like a better hospital than City 
Hospital. But notice that City Hospital has a lower death 
rate than Rural Hospital for patients in good condition 
and those in poor condition. This is an example of 
Simpson’s Paradox. Simpson’s Paradox occurs when an 
association has one direction at the group level, but the 
opposite direction in each of the sub-groups. 

Before we shut down City Hospital as “the hospital of 
death,” we need to consider whether City’s higher death 
rate could be confounded by patient condition. Note 
that patient condition is associated with the outcome of 
interest (death) and with the predictor (hospital). Being 
in poor condition is positively linked with dying. Dying 
is more likely for patients in poor condition (6.5%) than 
for those in good condition (1.5%). See Table 1. Being 
in poor condition is positively linked with City Hospital. 
The percentage of patients who are in poor condition is 

Death  Rates by Hospital
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 Figure 1. Hospital death rates by percentage of patients in poor 
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Standardizing Hospital Death Rates
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Figure 2. Hospital death rates standardized based on patient 
condition

greater at City (90%) than at Rural (30%). See Table 2. 
To make a fairer comparison of these hospitals, 

we need to standardize their mix of patients. Let’s 
standardize both hospitals on their combined mix (60%). 
Using the group average as the standard emulates the 
desired outcome in a randomized experiment where the 

Family income is higher for married-couple families 
($60,100) than for single-parent families ($23,000). In 
order to standardize data, we need the distribution of 
families by family structure within each race, as shown 
in Table 4.

Based on Table 4, families headed by a married 
couple is more likely among whites than among blacks 
(82% compared to 47.5%). Figure 3 summarizes this data 
so it can be standardized graphically.

To take into account the influence of family 
structure, let’s standardize the mix of family types to a 
standard mix: the overall percentage of families who 
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Using a seatbelt is positively associated with a lower 
death rate, as the death rate was much higher for those 
who didn’t use a seatbelt at all than for those who used 
one (111 per 10,000 compared to 21 per 10,000 in Table 
5). And using a seatbelt is positively associated with 
having an airbag, as the percentage using a seatbelt is 
greater among people in cars with airbags than in cars 
without (85% compared to 60% in Table 6). 

Let’s standardize on the overall percentage of 
people in accidents who were wearing a seatbelt (73%), 
as shown in Figure 4. 

are married (78%). Standardized family income is 18% 
more for whites ($53,000) than for blacks ($45,000). 
Standardizing on family structure decreases the black-
white income gap by 65%, from $21,600 to $8,000. Thus, 
65% of the black-white family income gap is explained 
by family structure.

Auto Death Rates by Airbag Presence
We generally think airbags are good. That conclusion 

is supported by the data in Table 5, which appeared in 
Mary C. Meyer and Tremika Finney’s CHANCE article, 
“Who Wants Airbags?”. For the occupants of automobiles 
in accidents, the death rate is lower for those with an 
airbag than for those without (37 per 10,000 compared 
to 60 per 10,000).

Table 6. Automobile Accident Occupants Using Seatbelts  
and/or Having Airbags

 

Number 
(1,000)  

Seatbelt Used  

Airbag  No Yes All 
No  1,952 2,903   4,855 
Yes     871 4,872   5,743 
All  2,823 7,775 10,598 

 

Auto D eaths  vs Airbag Presence

C o n fo u n d e d  b y  S e a tb e lt  U s e

15

43

70

98

125

0% 20% 40% 60% 80% 1 00%

P e rc e n ta g e  w h o  w e a r S e a tb e ltsN o ne All

A irb a g

N o  A irb a g

A irb a g

S ta n d a rd iz e

N o  A irb a g

 Figure 4. Automobile accident death rates with and without an 
airbag, standardized based on seatbelt usage

Head of Family   Families,  

1994  Unmarried Married All 

White 10,539 47,905 58,444 
Black    4,251   3,842   8,093 
All  14,790 51,747 66,537 

Table 4. Number of Families by Race and Family Structure

Death Ra te Seatbelt Used   
A irbag N o Yes All 
N o 105 26 60 
Yes  122 18 37 
A ll 111 21  

 

Table 5. Death Rate per 10,000 Automobile Accident Occupants

But wait! For those not using a seatbelt (left column), 
the death rate was higher for those with an airbag than 
for those without (122 per 10,000 compared to 105 per 
10,000). The association between airbags and death rate 
may be confounded by seatbelt usage. Consider the 
distribution of automobile accident occupants as shown 
in Table 6.

The standardized death rate of occupants in auto 
accidents is slightly higher for those with air-bags than 
for those without (47 per 10,000 compared to 46 per 
10,000). So, do airbags save lives? Not on average for 
this mix of occupants. This situation is complex because 
there is an interaction between having airbags and using 
seatbelts. We can see this because the lines cross. The 
main point is that seatbelts make a bigger difference in 
saving lives! Without taking into account the effect of 
seatbelts, the effect of airbags is almost masked due to 
the confounding and interaction. 

Analysis of Confounding
Now that we have seen how a lurking factor can 

confound our understanding of a statistical association, 
it is good to reflect on what causes these situations and 
what we can do to avoid them.

Notice what is common to the three examples 
we have examined. In each case, the researcher was 
an observer. The researchers did not (and could not) 
assign patients to a particular hospital, determine 
which families were headed by a married couple, or 
determine which car owners bought cars with an airbag. 
Studies in which the researcher is passive in assigning 
subjects to exposure and control groups are called 
observational studies. While the influence of chance 
decreases as sample size increases, the influence of a 
confounder remains unchanged in observational studies. 
The influence of confounding can be a major problem—
if not the main problem—in social sciences research, 
according to Stanley Lieberson in Making It Count. 

Confounding also can arise in any study—
observational or experimental—where the response 
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due to a factor is observed or measured at a single 
level and the choice of level influences the association. 
Because most studies in the news are observational, 
understanding confounding is absolutely necessary to 
being statistically literate. 

A Problem from Baseball
To test your understanding of this graphical 

technique, try working out this problem from baseball.
Ted and Sam are on the same baseball team. Both 

players have been to bat 100 times. Sam had 26 hits and 
Ted had 34 hits. So, Sam’s batting average is .260 (26%) 
and Ted’s is .340 (34%). But the coach thinks Sam is the 
better hitter. Could this be due to Simpson’s Paradox? 
Could the strength of the pitcher be a factor? Could the 
percentage of times each player faced a strong pitcher be 
a lurking variable? If the pitcher was weak, Sam hit 50% 
of his times at bat while Ted hit 40% of the time. When 
facing strong pitchers, Sam hit 20% of the time while 
Ted hit only 10% of the time. Who is the better hitter? 
To answer this question, standardize their averages as 
if each faced strong pitchers 50% of the time. After you 
have worked this problem, check your answer with the 
answer on Page 21.

Conclusion
The influence of context on comparisons of ratios 

can be profound. Context is an essential difference 
between statistics and mathematics. To understand 
the influence of context on a statistic or a statistical 
association, it helps to understand the confounding 
effect of lurking variables. 

Confounding from lurking variables is the reason 
that “association is not necessarily causation.” With this 
understanding, we have a stronger reason to be careful 
in using statistical association as evidence for casual 
connections. A statistical association is only the first step 
in establishing causation.

Confounding and standardization are two of the 
most important ideas in statistics. Once we recognize 
that standardizing (taking into account confounding) can 
change the size of a comparison—and may even reverse 
the direction (Simpson’s Paradox)—we have taken a big 
step toward being statistically literate.

Viewing confounding as the influence of context 
increases our statistical literacy and provides a link 
between statistics and other areas of study, including the 
social sciences and the humanities. For more about this, 
see Schield’s “Statistical Literacy and Liberal Education 
at Augsburg College,” available at www.StatLit.org/pdf/
2004SchieldAACU.pdf. 

Editor’s Note: The author would like to thank the 
W. M. Keck Foundation for their grant “to support the 
development of statistical literacy as an interdisciplinary 
curriculum in the liberal arts” and Tom Burnham, 
Cynthia Schield, and Marc Isaacson for editorial 
assistance. 
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Gathering data is one of the first topics discussed in 
an introductory statistics course. Along with the 
effective display and summary of sets of data, the 

issues surrounding the source of data are an important 
part of our understanding. In most presentations, there 
are two valid sources for data, either random sampling 
or a randomized experiment. Other sources of data, 
including observational studies, often are used only as 
examples of a flawed source of data. Due to the possible 
presence of confounding factors in observational studies, 
we often are told that the results cannot be counted on, 
especially in establishing causal relationships.

The characterization of an observational study as 
a poor stepchild to random samples and experiments 
in producing data, however, doesn’t do justice to the 
important place it can serve in gathering useful data. To 
be sure, we should learn the potential pitfalls in using 
observational studies, but this should fall short of the 
complete rejection that is most typical. Let’s explore why 
observational studies are a critically important source of 
data in a number of settings and how the design of the 
study can maximize useful information while minimizing 
the chance of confounding spoiling any conclusions.

Why an Observational Study?
First, let’s understand why anyone would choose 

a potentially problematic method of data collection (an 
observational study) instead of one that features random 
selection or random assignment. Most of us have some 
exposure to the notion that there are times when a 

randomized trial is either impossible to do or unethical 
to do. A randomized trial might be impossible if, for 
example, researchers are studying whether genetic factors 
are related to a response. The most obvious example of 
these genetic factors is gender—you can’t randomly assign 
male or female to the participants in your study—and other 
genetic factors that share this trait. In addition, it might be 
unethical to do a randomized trial if the study is about the 
effects of known risk factors that can’t be imposed on the 
subjects without potentially harming them.

In addition to these reasons, in an article in the New 
England Journal of Medicine, Kjell Benson and Arthur 
Hartz note that “observational studies have several 
advantages over randomized, controlled trials, including 
lower cost, greater timeliness, and a broader range of 
patients.” The issue of cost is always a factor in the real 
world, and generating new data can be quite costly. 
Timeliness is a potential problem for randomized trials 
if the response takes a long time to develop, such as 
cancers or other medical issues. The scope of inference of 
a study may be limited to the population from which the 
participants are selected, and often is a result of relying 
on volunteers.

Different Types of Observational Studies
Thus we see that using observational studies to 

gather data offers advantages as well as risks, and there is 
ongoing research about how to do observational studies 
so as to minimize the risks involved while exploiting 
the advantages. Different approaches to observational 
studies balance these competing forces in different ways, 
so let’s look at the major types of observational studies, 
when they are most helpful, and what cautions should be 
employed with their use.

Because much of the current research about 
observational studies takes place in the fields of medical 
practice, the example we’ll use to illustrate the different 
approaches is a medical one that is common but not 

Observational Studies:  
the Neglected Stepchild in the Family of Data Gathering

Peter Flanagan-Hyde (peterfb@mac.com) has been 
a math teacher for 27 years, the most recent 15 in 
Phoenix, Arizona. With a BA from Williams College and 
an MA from Teachers College, Columbia University, he 
has pursued a variety of professional interests, including 
geometry, calculus, physics, and the use of technology in 
education. Flanagan-Hyde has taught AP Statistics since 
its inception in the 1996 –1997 school year.

A P  S T A T I S T I C S



20   FALL 2006

following an appendectomy, such as infection. 
Matching these individuals with others who did not 
have the adverse outcome and examining the type of 
surgery they had allows us to estimate the relative risk 
of infection for the two surgical procedures.

COHORT STUDIES 
A cohort study is the most highly respected 

observational study. A large, disease-free population 
(the cohort) is selected and then consistently monitored 
for a long period of time, with many characteristics of 
each member of the population recorded. If there is 
a particular risk factor of concern, a second matched 
cohort can be selected that does not have the risk 
factor but is similar in other respects. Over time, some 
of the members will develop a variety of diseases, and 
the characteristics that distinguish these members from 
those who remain disease-free can be determined. 

Cohort studies are prospective, and because there 
is a temporal development of the data, it can be seen 
clearly whether a given factor precedes the development 
of the disease, unlike a cross-sectional study. Large 
cohort studies were instrumental in strengthening the 
link between smoking and lung cancer. In our example 
of appendectomies, it is possible that there may be 
longer-term differences in the patients who have the 
two treatments. A cohort study would be the only way 
to discover this.

Cohort studies, though, must include many subjects 
to be effective, and are, therefore, expensive to conduct. 
They also are not very effective in studying rare 
diseases, unless extremely large, as the cohort may or 
may not have any members who develop the disease. 
On the other hand, they can be effective at studying 
groups whose risk factors are rare. For example, are 
ultramarathon runners (those who run races of 30 miles 
or more) are more prone to degenerative joint diseases 
as they age? Selecting a cohort of ultramarathoners (a 
rare breed in the general population) and a cohort of 
other avid exercisers could assess this. 

In addition to the large sizes and associated costs, 
the long time frame of cohort studies means there may 
be difficulties in following the members into the future. 
If members drop out or are otherwise lost, there may 
be a nonresponse bias introduced into the study.

In most cases, the design chosen for an observational 
study is determined by the characteristics of both 
the population and the issue being investigated, as 
well as available financing. Descriptive and case-
control studies, since they are retrospective, often can 
be conducted for little money and produce nearly 
immediate results. Large cohort studies, on the other 
hand, are expensive and take place over long time 
frames. In what is perhaps the most famous large 
cohort study, the Framingham Heart Study, more than 
10,000 participants have been monitored since 1948. 
The study is now working with a third-generation 
cohort—grandchildren of the original participants. This 

typically life-threatening: appendectomies. Let’s start 
with the weakest types of observational studies and 
work up to the putative gold standard—the randomized, 
controlled trial.

DESCRIPTIVE STUDIES
In a descriptive study, the only goal is to either 

estimate the incidence of a condition or determine if there 
is any evidence of a difference in treatment outcomes. 
In our example, you might search through hospital 
records in a given city to make a list of patients who had 
laparoscopic surgery for abdominal pain and those who 
had the more traditional open surgery. If the outcomes in 
one group are more favorable, it may be that the treatment 
is generally better. However, in a descriptive study, you 
can never make a valid causal association, as it may well 
be that patients who had more severe symptoms typically 
were given one of the treatments. Descriptive studies do 
have a role, however, in formulating hypotheses that can 
be checked by more rigorous designs.

CROSS-SECTIONAL STUDIES 
A cross-sectional study is a snapshot of a population 

at one moment in time. Various conditions are measured 
on the population or a sample from the population, 
and associations between potential risk factors and the 
incidence of illnesses are examined. Because a cross-
sectional study measures all of the variables (risk factors 
and illness) at the same moment, it is impossible to 
determine the order of any of the conditions, thereby 
rendering causal relationships impossible to assess. In 
our example, another drawback of a cross-sectional study 
is evident: at any given moment, the number of patients 
with appendicitis is likely to be small, and this issue is of 
even greater concern for diseases that are rare in a given 
population.

CASE-CONTROL STUDIES 
A case-control study is a retrospective study in that 

it looks back in time through existing records. Unlike a 
descriptive study, however, there is a deliberate matching 
of subjects who have a given disease with other members 
of the population who don’t. Each of the disease-free 
members in the study are selected to be as similar as 
possible to one of the members with the disease in terms 
of demographic and other variables that might affect the 
condition. An examination of the records is conducted to 
determine any systematic differences in the two groups. 
This has the potential to quickly identify causal factors, and 
it was through case-control studies that several notorious 
causal connections were made, including the association 
with the drug diethylstilbestrol (DES), taken in pregnancy, 
and cancers that developed in the offspring, and the initial 
association between smoking and lung cancer. 

In our example, a case-control study might look at 
a number of individuals who have an adverse outcome 
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study has been instrumental in developing the current 
understanding of heart disease and has led to more than 
1,200 publications about risk factors for coronary disease. 
The cost of this study over the years, however, is measured 
in the tens of millions of dollars.

QUALITY OF INFORMATION FROM  
OBSERVATIONAL STUDIES

The money spent on observational studies can be well 
worth it if the studies produce sound results. Otherwise, 
if confounding is an overwhelming problem, the studies 
might be leading us in the wrong direction. Several recent 
efforts have been made to evaluate the quality of results 
from observational studies, and, in general, the results are 
promising. It seems that with well-designed observational 
studies, the risks of confounding can be limited. Concerns 
have been expressed that observational studies tend to 
exaggerate treatment effects. A New England Journal of 
Medicine article by J. Concato, N. Shah, and R. Horowitz, 
“Randomized, Controlled Trials, Observational Studies, 
and the Hierarchy of Research Designs,” indicates that 
“well-designed observational studies (with a cohort or 
case-control design) did not systematically overestimate 
the magnitude of the associations between exposure and 
outcome as compared with the results of randomized, 
controlled trials.” In fact, it seems there can be more 
variability in the outcomes of the randomized, controlled 
trials than in the observational studies.

For our example, appendectomies, there have been 
a number of studies that have compared the results of 
laparoscopy and open surgery. The consensus wisdom 
is that laparoscopic surgery, the less invasive alternative, 
is the preferred method for straightforward cases. This 
consensus has been established by a combination of 
both observational studies and randomized, controlled 
trials. A comparison by K. Benson and A. Hartz of eight 
observational studies and 16 randomized, controlled trials 
revealed that seven of the eight observational studies 
found an advantage for laparoscopy (and the eighth no 
difference), while, among the 16 randomized trials, eight 
favored laparoscopy, three favored open surgery, and the 
remaining five had very close results.

Conclusion
To use a randomized, controlled trial, the research 

question must be relatively mature—with some confidence 
that a treatment is meaningful—before the cost of the trial 
can be justified. An observational study can set the stage. 
In many situations, an observational study is a first step 
toward understanding by roughly identifying associations 
that can be more closely examined with either a more 
rigorous observational study or a randomized, controlled 
trial. The issue of confounding with observational studies 
is real, but we can benefit from an observational study 
by having a more developed view that places the value 
of a randomized, controlled trial in a more meaningful 
context. 
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Answer to Baseball 
Problem  

The players’ standardized batting 
averages are .350 (35%) for Sam and .250 
(25%) for Ted. After taking into account 
(controlling for or conditioning on) the 
strength the pitcher, Sam’s batting average 
is higher than Ted’s. So, the Coach is right 
– Sam is the better hitter.
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STATS 

Suppose 10 people are asked to rate 
themselves in terms of their accumulated 
wisdom. The first nine people, being quite 

humble, give themselves a zero. The tenth person is 
anything but humble and boldly asserts, “I have infinite 
wisdom!”

Suppose further that the 10 people who supply these 
wisdom scores are considered to be our population of 
interest, not a sample. Finally, suppose you’re asked 
to compute the z-score for the tenth person’s wisdom 
score.

A z-score, of course, is computed via the formula,

X ,

with the result indicating how many standard deviations 
( ) a particular score (X) lies above or below the 
population mean ( ). For example, if a student earns a 
score of 80 on a test given to a group of examinees in a 
population with a mean and standard deviation equal to 
60 and 10, respectively, the z-score for the student who 
earns 80 is equal to +2.00.

Okay, it’s time for you to put your brain to work on 
the 10 wisdom scores shown above. As our group of 10 
is the entire population of interest, what do you get if you 
convert the tenth score of infinity into a z-score? Or, stated 
differently, how many standard deviations is our not-so-
humble tenth person above the mean of our little group? 
After you have worked this through, see Page 29 for the 
puzzle’s solution.
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Statistics and Research, a book that 
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of statistical principles. 
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S E C T I O N R U  S I M U L A T I N G ?

Very simple simulations can be done by mechanical 
methods such as tossing coins or rolling dice, for 
example. With real dedication and a lot of spare 

time, we could roll a pair of fair dice 600 times and 
notice that we would get a total of 7 ‘about’ 100 times. 
Suppose we let the random variable T be the total on any 
one roll. Then, this experiment could provide a crude 
demonstration that P{T = 7} = 1/6 = 0.167. This exact 
result is easy to find: When two dice are rolled, there are 
36 possible outcomes, and six of them result in the event 
{T = 7}.

 We say a simulation with 600 tosses is crude because, 
according to the binomial distribution, we would have 
only about three chances in four of seeing the event  
{T = 7} between 90 and 110 times, so there is about one 
chance in four our estimate of P{T = 7} falls outside the 
interval [90/600, 110/600], or [0.150, 0.183]. In practice, it 
usually is not feasible to do useful simulations with such 
mechanical methods as rolling dice.

Credit for being the first to try computer simulation 
often is accorded to Stanislaw Ulam and John von 
Neumann, famous mathematicians and physicists working 
together on the Manhattan Project in World War II. In 
1946, Ulam was pondering the chances of winning a 
game of solitaire, which begins when the 52 well-shuffled 
cards of a standard deck are laid out in a particular array. 
The game is sufficiently complicated that a solution using 
permutations and combinations seems daunting. So, 
Ulam wondered about approximating the probability of a 
win as his fraction of wins in 100 games. The difficulties 
are that it would be a lot of work to do 100 games and, 
even then, 100 games would not be enough to get a very 
good estimate.

At that time, computers were just becoming fast 
enough that it was reasonable to imagine somehow using 
a computer to do simulation. Later that year, Ulam and 
von Neumann began to plan computer simulations on 
probabilities of neutron diffusion as a substitute for solving 
very difficult differential equations. (See “Interactive 
Learning with a Digital Library in Computer Science, The 
History of Computing, John von Neumann” available at 
http://ei.cs.vt.edu/~history/VonNeumann.html.)

Computerized ‘Sin’
Doing modern simulation depends on having available 

a supply of computer-generated “random numbers.” 
You may wonder how it is possible for a computer, 
programmed to follow fixed arithmetical rules, to produce 
random numbers. You would be right to wonder because, 
strictly speaking, it cannot be done. In fact, von Neumann 
became so discouraged with early attempts, he said at a 
conference on simulation in 1951, “Anyone who considers 
arithmetical methods of producing random numbers is, of 
course, in a state of sin.”

Some early simulations were done by capturing 
numerical results of natural phenomena thought to be 
inherently random, such as noise in electronic circuits, 
radioactive decay, and so on. As early as 1955, statisticians 
began to use published tables and decks of computer 
cards containing such random numbers to make random 
assignments of subjects to treatment groups in designed 
experiments and for small-scale simulations.

However, a lot of ‘sinning’ has gone on since 1951, 
and it seems von Neumann was too quick to give up on 
arithmetical methods. While it is not possible to generate 
truly random numbers with a deterministic formula on 
a computer, statisticians, mathematicians, and computer 
scientists have learned that—by being clever and careful—
it is possible to generate “pseudorandom” numbers. 
These are sequences of numbers that (we hope) cannot 
be meaningfully distinguished from random ones. Our 
purpose here is to explore briefly how we can be clever 
enough and careful enough to generate the pseudorandom 
numbers that make modern simulation possible.

Congruential Generators
Consider the problem of shuffling the 52 cards in a 

deck. For our purposes, it is convenient to number them 
1, 2, ..., 52. One way to shuffle these 52 cards is repeated 
use of the equation

ri +1 = (27ri) mod 53.

Start with any one of these numbers for r1, say  
r1 = 9. This arbitrary starting number is called the seed. 
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Here is how the equation works: 27r1 = 27(9) = 243. 
But 243 does not correspond to any of the cards, so 
divide 243 by 53 and you get 4 with a remainder of 31. 
Using the remainder as the next number, we set r2 = 31. 
That’s what “mod 53” means: Use the remainder upon 
division by 53 when the number of interest exceeds the 
modulus 53. In the language of the mathematical field 
called “number theory,” we say that 243 is congruent 
to 31 modulo 53.

Now repeat the process to get r3. The remainder is 42 when 
27r2 = 27(31) = 837 is divided by 53, so r3 = 42. Continuing in 
the same way, you can verify that the next three values in the 
sequence are r4 = 21, r5 = 37, and r6 = 45. This process produces 
all of the 52 numbers before getting back to 9 with r53 = 9. And 
then the sequence repeats itself. The output in Figure 1 shows 
the results of 60 iterations.

Of course, if we start with the seed r1 = 21, then we 
get r2 = 37, r3 = 45, and so on. So this formula shuffles 
the cards in a fixed rotation, where the seed r1 determines 
the starting card. More generally, a linear congruential 
generator is based on the equation

ri+1 = (ari + b) mod d.

Above, our choice of the constants a = 27, b = 0, and 
d = 53 was dictated by the need to shuffle the numbers  
1, 2, ..., 52, corresponding to the 52 cards in a deck.

a <- 27; b <- 0; d <- 53
m <- 60; r <- numeric(m); r[1] <- 9
for (i in 1:(m-1))
{
r[i+1] <- (a*r[i] + b) %% d
}
r; length(unique(r)); 
plot(r[1:59],r[2:60])
> r
 [1] 9 31 42 21 37 45 49 51 52 26 13 33 43
[14] 48 24 12 6 3 28 14 7 30 15 34 17 35
[27] 44 22 11 32 16 8 4 2 1 27 40 20 10
[40] 5 29 41 47 50 25 39 46 23 38 19 36 18
[53] 9 31 42 21 37 45 49 51

Figure 1. R code for implementing a linear congruential generator

The behavior of a generator depends on intricate rules 
of number theory (and, unfortunately, on other principles 
that are not completely understood). For example, if we 
use a = 8, b = 0, and d = 53, then we get a fundamentally 
different order for the 52 cards.

 [1] 9 19 46 50 29 20 1 8 11 35 15 14 6
[14] 48 13 51 37 31 36 23 25 41 10 27 4 32
[27] 44 34 7 3 24 33 52 45 42 18 38 39 47
[40] 5 40 2 16 22 17 30 28 12 43 26 49 21

However, if we used a = 7, b = 0, and d = 53, then 
only half of the 52 numbers are generated before the 
values begin to be repeated.

 [1] 9 10 17 13 38 1 7 49 25 16 6 42 29
[14] 44 43 36 40 15 52 46 4 28 37 47 11 24
[27] 9 10 17 13 38 1 7 49 25 16 6 42 29
[40] 44 43 36 40 15 52 46 4 28 37 47 11 24

If a generator has b = 0, it is called multiplicative 
because there is no additive term or increment in the 
equation. When b = 0, it is not possible to have ri = 0, but 
if b > 0, then ri = 0 is possible. 

Period of a Generator
The number of distinct values a generator produces 

before it starts to repeat is called its period. If a = 27 or 
3, we get the largest possible period 52, but if a = 7, the 
period is only 26. Clearly, the period cannot be larger 
than d (or if b = 0, not larger than d – 1). Several values 
of a give the full period 52 and fundamentally different 
orders of the cards. But, there clearly are not anywhere 
near enough values of a to generate a representative 
sampling of the 52 8 × 1067 possible orders of shuffling 
52 cards. 

We started by showing some simple generators with 
d = 53 because they show the idea of shuffling cards and 
involve numbers of manageable size. However, serious 
simulation—even for card games—requires a generator 
with a huge period and, hence, a huge value of d.

A Bumpy Histogram and Grid Patterns
Before we show generators with larger periods, we 

will use the simple generators with d = 53 to illustrate a 
few more important ideas used to check the usefulness 
of congruential generators. In practice, we would like 
random numbers to be independent and uniformly 
distributed throughout the interval (0, 1). So, it is common 
to use values ui = ri / d because they lie between 0 and 1. 

Figure 2. Histogram of 1,000 numbers ui = r/d from the congruential 
generator in Figure 1. The histogram is ‘bumpy’ because there are 
only 52 values among the 1,000 numbers generated.
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As a first check whether the, ui are uniformly 
distributed, we could make a histogram, which should 
look reasonably flat. Figure 2 shows a histogram of  
m = 1000 values from the generator of Figure 1. Of course, 
there are really only 52 different numbers ui = ri / d 
repeated over and over again in rotation. The histogram 
is bumpy, rather than flat, mainly because it happens 
that eight of the bins each include five of the 52 values 
(accounting for 40 values so far) and the remaining two 
bins include six numbers each.

Many congruential generators with large periods yield 
histograms that are as smooth as would be expected 
from a true random sample from a uniform distribution. 
But some generators that pass the histogram test behave 
very badly in other, more subtle ways. For example, the  
ui values may be associated in ways that make them 
useless for simulation.

If we plot the pairs (ui, ui+1) in the unit square, we 
can check for pairwise independence. Ideally, these points 
would fall randomly throughout the unit square without 
showing any apparent pattern. Unfortunately, in such 
plots, all congruential generators yield points that lie on 
a grid.

Figures 3 and 4 show the remarkably different 
results for generators with a = 27 and a = 8, respectively. 
Comparing Figures 3 and 4, we clearly see a = 8 makes 
a more satisfactory grid. In Figure 4, coverage is about 
as smooth as possible with a period as small as 52. 
Unfortunately, it is possible to have a generator with a 
huge period but with a very coarse grid pattern, similar 
to the one in Figure 3. A useful generator will have a 
large period and a grid pattern so fine we will not notice  
it in practice.

Figure 3. Plotted in the unit square, successive points of the linear 
congruential generator with a = 27, b = 0, and d = 53 lie on a ‘coarse’ 
2 × 26 grid.

A useful generator also will have nonintrusive grid 
patterns in dimensions higher than two. The generator 
with a = 65539, b = 0, and d = 231 shows a pattern that 
is not distinguishable from random when 2,000 of its 
points are plotted in a square in Figure 5, using the same 
method as for Figures 3 and 4. But a disastrously coarse 
grid appears when it is plotted in 3-D. In the unit cube, all 
of its very large number of points lie in only a few widely 
separated parallel planes.

Figure 4. Plotted in the unit square, pairs of adjacent values of the 
generator with a = 8, b = 0, and d = 53 lie on a relatively fine 8 × 
9 grid. Compare with the coarse grid of Figure 3. 

Figure 5. Pairs of successive ui values from the RANDU generator 
plotted in the unit square. In 2-D, the grid is so fine that 2,000 points 
show no pattern that would contradict randomness. 
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Figure 6 shows the approximately 1,000 points that lie 
in the front one-tenth of the cube (out of 10,000 points in 
the cube altogether.)

This generator, known as RANDU (for the function 
call to use it on IBM mainframe machines), was perhaps 
the most popular in the world for many years. But then 
people started to notice it gave incorrect simulation 
results for some problems with known answers. Then, 
its bad 3-D behavior was discovered. Lesson learned! 
Now it is considered mandatory to validate generators 
in high dimensions before using them for serious 
simulation work. 

The default pseudorandom number generator in R, 
accessible with the function runif, is more complicated 
than the congruential generators discussed here. It has a 
period of 219,937 – 1  4.32 × 106,001. (Within the precision 
of R, there are about 4.31 billion distinct values.) Its 
geometry has been ‘twisted’ so that even its very fine grid 
is nonlinear, and it has passed tests for independence in 
623-dimensional space.

Validating a Generator
There are plenty of rules, based on experience, for 

choices of numbers a, b, and d that should be avoided, 
but no rules that ensure success. We have discussed 
only linear congruential generators because they are 
easy to explain and have been widely used. There are 
other kinds of generators that have been successful, and 
there are useful guidelines for properties to avoid in 
constructing them. We said earlier that cleverness and 
care are necessary to do successful simulation based on 
computer algorithms. The clever part is to understand 
what must be avoided. The careful part is to test a 

candidate generator thoroughly. We have mentioned 
some of the most basic tests:

modern simulations use millions of pseudorandom 
numbers, and we do not want the numbers to recycle 
during the simulation.

tests, to test whether results fit a uniform distribution.

the generated values. Human “pattern recognition” is 
useful here. Anything that looks like a pattern means 
trouble. There are also methods to test numerically for 
correlation and nonlinear association.

All of these are important methods of screening out 
bad generators. (See Random Number Generation and 
Monte Carlo Methods for authoritative information about 
congruential and other generators.) However, perhaps the 
most important kind of test for a generator is to use it to 
solve difficult simulation problems with known answers. 
Standard batteries of such problems have been developed 
for testing generators.

About Seeds
If you start a congruential generator with a particular seed, 

you will always get the same sequence of pseudorandom 
numbers. There are two ways to handle seeds in practice. 

One method is for an unpredictable seed to be 
supplied by the program that uses the generator. As a 
simulation starts, R gets this unpredictable number from 
detailed information on the computer system’s clock. For 
a generator with a huge period, it would not be feasible 
to figure out where in the sequence of pseudorandom 
numbers the simulation started. So, the effect is as if the 
simulation is based on truly random numbers. 

The other method is for us to supply the seed. In 
R, we could begin our simulation with the statement  
set.seed(1212) to start with seed 1212. This can be 
useful for debugging simulation programs. Every time we 
start our simulation with the same seed, we will get exactly 
the same answer. We use seeds in the next section.

A Simple Comparison
Although the linear congruential generator with 

a = 1,093, b = 18,257, and d = 86,536 is not good 
enough for advanced simulations, it is pretty good. It 
has period d and has passed some simulation tests. Now 
suppose someone proposes changing its increment to 
b = 252. In the challenges below, we ask you to show 
various reasons, based on the principles discussed 
above, for why this is a bad idea. (One reason is that 
252 has factors in common with 86,536.) For now, let’s 
try a simple simulation with the modified generator 
to see how it performs. Suppose a fair coin is tossed 
repeatedly and that Fn is the fraction of heads in the first 
n tosses. If we plot Fn against n, the resulting “trace” 
should take a random path that approaches 1/2. (This 

Figure 6. When 10,000 triples of adjacent ui values from RANDU 
are plotted in the unit cube, we see they all lie in a few widely 
separated planes. The figure shows about 1,000 points that lie within 
0.1 of the front surface of the cube.
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is similar to plotting traces of the public opinion polls 
that we did in the Fall 2005 issue.) 

Figure 7 shows traces from two simulations. The 
‘saw tooth’ path that converges rapidly to an incorrect 
value slightly below 1/2 comes from using the bad 
modified generator with seed 12. The meandering  
path that approaches 1/2, as we would expect of a 
random sequence of heads and tails, comes from the 
R code below. Both simulations are based on 10,000 
simulated tosses. It is clear from Figure 7 that the bad 
generator is not giving values consistent with random 
numbers. This one picture is enough to discredit  
the generator.

set.seed(1212)
m <- 10000
x <- runif(m); f <- cumsum(x > .5)/(1:m)
plot(f, type=“l”, ylim=c(.48,.52))
abline(h=.5)

In both cases, the simulation assumes the generator 
produces variables Xi distributed uniformly on the 
interval (0, 1), so the events {Xi > .5} can be taken 
as equivalent to getting a head on the ith toss of the 
coin. The statement Xi > 5 is either TRUE (value 1) 
or FALSE (value 0). If you use the same seeds and 
software we did, you should get exactly the same result.  
(See challenge #3 at the end for hints on plotting the 
bad trace.)

-log(runif(100)) gives a vector of 100 
independent exponential random variables, each with 
rate 1. This method is exact, but faster methods that 
do not involve taking logarithms have been proposed. 
Direct method: rexp(100, 1).
sum(runif(12) - 6 is very nearly a standard 
normal random variable. Obviously, the result obtained 
here, based on trusting the Central Limit Theorem for 
the sum of only 12 observations, cannot fall outside 
of the interval (–6, 6), but an actual standard normal 
random variable has an extremely small probability 
of doing so. A better, but more complicated, method 
of generating standard normal random variables 
uses a trigonometric transformation. The method 
shown was used in an earlier era when computer 
manipulation of trigonometric functions was very 
slow. Direct (and better) method: rnorm(1).

unique(ceiling(52*runif(1000)))[1:5] 
gives five distinct randomly chosen numbers between 
1 and 52 that can be interpreted as a fairly dealt 
poker hand. This is a wasteful method and it has a 
miniscule chance of not working. Direct (and much 
more efficient and absolutely sure to work) method: 
sample(1:52, 5).

Challenges
1. What is the period of the bad generator used in  
Figure 5? Hint: The period cannot exceed d. Run a 
program similar to that of Figure 1 for d iterations 
and then find the number of distinct values with 
length(unique(r)). Similarly, show that the period 
of the pretty good generator we ruined to get the bad 
generator has period d = 86,536.

2. Plot 20,000 adjacent pairs of values (ui, ui+1) in the 
unit square from each of the generators in challenge #1 
and runif. For uncluttered views, use the argument 
pch=“.” in the plot statement. How can you tell 
runif is the best?

3. Make Figure 7 on your own. Use the code shown to 
make the trace for runif. Then, use the bad generator 
to make a new vector x of m faulty pseudorandom 
numbers and, from it, a new vector f. Then, overlay the 
bad trace with lines(f). Finally, change the seeds for 
both generators (maybe use your birth month for both). 
What changes substantially and what remains essentially 
the same?

4. (Intermediate) The probability of getting no aces in a 
fairly dealt poker hand can be obtained by combinatorial 
methods. Explain why this can be evaluated in R as 
choose(48, 5)/choose(52, 5). Then, write a 
program, based on sample, to simulate this value. Go 
through a loop to simulate 50,000 poker hands. Hint: 
Explain why the number of aces in one poker hand can 
be simulated as sum(sample(1:52, 5) < 5).
5. (Advanced) Explain the rationale behind the methods 
suggested in each of the bullets in the last section of 
this article.  

Figure 7. Traces of the proportion of heads after each of 10,000 
simulated tosses of a fair coin using a bad generator (regular saw 
tooth path) that converges too quickly and to the wrong result 
and a good generator (meandering path) consistent with random  
coin tosses.

Nonuniform Random Variables
R uses uniform random variables from its random 

number generator to obtain random variables with a 
variety of distributions other than uniform. Here are a few 
ways this can be done:

sum(runif(10) < 1/3) has a binomial distribution 
with 10 trials and P(Success) = 1/3 on each trial. The 
direct method in R is rbinom(1, 10, 1/3).
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S T A T I S T I C A L   – S I N G S

Chris Olsen
to hear some presentations by grad students. (Okay, 
metaphor time. Think May flowers now.) What struck 
me was the quality of the presentations. True, this was 
probably not a random sample of students, but there are 
some statistics professors who should take some bows. 
All those lectures raining down on their students (April 
showers? Still with me on this?) were definitely not in vain. 
One suspects these youngsters learned their PowerPoint 
from other sources, but what good is PowerPoint without 
the solid content backed by the explanatory power of 
statistics? Many of these young men and women were 
no doubt presenting parts of their dissertations—their 
advisor’s names were listed in the program as co-
presenters, although said advisors seemed to not do any 
co-presenting. One hopes these advisors were present 
to take well-deserved pride in their student’s work—the 
pride only teachers know.

After taking the red-eye back home and catching up 
on my day job, I headed for Washington, DC. I had once 
again missed the cherry blossoms, and—guess what?—it 
was raining there also. This time, when I came in out of 
the rain, I heard scholarly papers of a different sort, the 
general topic being epidemiology. Epidemiology, you 
may recall, is the study of risks to health at the population 
level. What factors and behaviors are risky? How are such 
risks identified, controlled, and perhaps even eliminated? 
Infectious diseases are the most commonly thought of 
examples for what epidemiologists deal with, but the 
topics of epidemiology range from childhood obesity to 
bicycle helmet use.

Once again, I heard presentations by both experts 
in the field and by the next generation of potential 
epidemiologists. And, once again, the younger folks 
stole the show with their presentations. Here, as in San 
Francisco, the statistical power of their methodology 
loomed large in their papers. One young lady invented 
something called a “bi-orbital rotational swing” as a 
therapy for treating attention deficit hyperactivity in 
children. A young man surveyed three high schools to 
find that vigorous physical activity might offset negative 
effects of minor mood disorders. And another young 
lady presented her study of high school students’ alcohol 
drinking behavior and compared the behavior to their 
parents’ perception of what was going on. (Surprise! The 
parents were clueless.)

So here’s the deal, I collect sayings. Aesop, Confucius, 
Homer Simpson, all the classic philosophers. I 
have found on many occasions that a well-placed 

aphorism can disguise even the most serious dearth of fact 
and/or logic, and I have no dearth of such dearths. One 
classic saying is “April showers bring May flowers.” I was 
reminded of this saying when I spent a couple weekends 
last April—one on the West Coast and one on the East 
Coast—basically in the rain. Contrary to the view of some 
of my students, I do know enough to come in out of 
the rain, and, as it happens, I came in out of the rain to 
observe some budding May flowers. (Work with me here. 
I’m attempting to do one of those metaphor things.)

My first coming in out of the rain was in San Francisco 
in early April. (I guess the old song is correct: It never 
rains in Southern California.) I attended the 2006 annual 
meeting of the National Council on Measurement in 
Education. NCME is comprised of those folks who (a) 
write and analyze national tests such as the ACT, SAT, 
and AP tests; (b) worry about using tests equitably to 
make decisions about college admissions, high school 
diplomas, and No Child Left Behind; and/or (c) study 
things like posterior predictive model checking for 
within-item multidimensionality in item response theory. 
Uh-huh, right.

As I blissfully sat through the three days of the 
conference, I heard some nice presentations of papers. 
Almost all of them were based on statistical reasoning 
and, therefore, pretty interesting. Most of the sessions 
were presented by folks in the educational measurement 
community, expert in the ways of convoluted theoretical 
statistics. Toward the end of the conference, I happened 

Chris Olsen (colsen@cr.k12.ia.us) teaches mathe-
matics and statistics at George Washington High School 
in Cedar Rapids, Iowa. He has been teaching statistics in 
high school for 25 years and has taught AP Statistics since 
its inception.

I Salute You
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These papers, being more applied, did not exhibit 
the same theoretical statistical depth as the NCME papers. 
The analyses presented in Washington were more along 
the lines of one-way and two-way analysis of variance, 
analysis of covariance, a little multiple regression now and 
then, and lots of concern about confounding variables. 
Really, the kinds of stuff one learns in the standard 
undergraduate statistics program. Oh, I’m sorry. I think I 
may have forgotten to mention that these young men and 
women presenting in Washington were all high school 
students. 

They were there as regional finalists in a scholarship 
competition, part of the Young Epidemiology Scholars 
program, an effort funded by the Robert Wood Johnson 
Foundation. It was my very great pleasure to have a 
front-row seat for these presentations; I was one of the 
judges. In that role, I was able to probe slightly their 
understanding of the statistical basis for their studies. I am 
here to tell you they did their statistics teachers proud. 
The level of their expertise doesn’t derive from mindless 
software twiddling; it is understanding that comes from 
hard study and reflection with dedicated teachers—in 
this case, high school math and statistics teachers. These 
students also are not a random sample of today’s high 

school students, and their teachers may not be able to take 
credit for their polished PowerPoint presentations either, 
but, once again, I can report that some serious teacher 
pride was in order.

So, let’s get to the bottom line here. To teachers of 
statistics everywhere, both high school and college, I offer 
a well-deserved salute. Though as teachers of statistics, 
you probably shy away from basking in the limelight with 
your students, you certainly deserve extensive vicarious 
credit—your April efforts do bring forth some fine May 
flowers. And I salute you students of statistics as well. 
Even though you might sometimes feel you are being 
‘drenched’ in your studies, your hard work will pay off 
next May and in years to come. 

There are two ways to solve this puzzle. The first 
approach involves discovery and then a logical leap. The 
second approach involves a little algebra.

To solve this problem via discovery followed by 
a logical leap, you must first change the tenth wisdom 
score from infinity to something a bit more manageable. 
Let’s change it to 10. If you now compute the z-score 
for this tenth score, you get +3.00, because 10 is three 
standard deviations (  = 3) above the group mean 
(  = 1). Next, you must change the tenth score to 
something else, and then compute the new z-score. 
This time, let’s set the tenth score equal to 100. When 
we now compute the z-score, it again turns out equal 
to +3.00 because 100 is three standard deviations (
= 30) above the mean (  = 10). Finally, let’s change 
the tenth score one last time, now setting it equal to 1. 
When we compute the new z-score, it again turns out 
equal to +3.00 because 1 is three standard deviations  
( = .3) above the mean (  = .1).

What this little discovery exercise shows us is that the 
tenth person’s z-score turns out equal to +3.00 no matter 
how large or small the tenth wisdom score is, so long 
as it is higher than the other nine scores and they are all 
identical. If it doesn’t matter how far out the “outlier” lies, 
then it is a legitimate logical leap to conclude that the  
z-score will be equal to +3.00, even if the tenth wisdom 
score approaches positive infinity.

The second approach to solving this puzzle involves 
a small amount of simple algebra. Let’s represent the tenth 
person’s wisdom score as D for “discrepant.” Because 
nine of the 10 wisdom scores are each equal to zero,  

 = D / 10. Noting that can be computed as the sum of all 
raw scores individually squared minus the mean squared, 

 turns out equal to 9 ( D ) / 100 and  = 3D / 10. Inserting 
the values for  and  into the formula for z and substituting  
D for X, we find that the z-score is equal to 9D / 3D, or 
+3.00. Note that the tenth wisdom score, whatever it might 
be, cancels out in the last step of our algebraic solution 
to the puzzle. 

It is worth asking what would happen to the last 
person’s z-score if the number of original scores (N) had 
been larger or smaller than 10. So long as all but one of the 
scores are identical, the z-score for the single outlier will 
turn out equal to N - 1. Thus, if we had started with 26 
scores, all identical except one, then the single discrepant 
score would have had a z-score of +5.00, regardless of 
whether it appeared—in the original dataset—to be close 
to or far away from the other 25 scores. 

Finally, it should be noted that the N – 1 scores that 
are identical need not be zero. So long as only one score 
is different from the rest, with all others being identical, 
the z-score for the outlier will be equal to N - 1, no 
matter what the common value of the other scores.

Now, put your thinking cap on one more time and 
try this. What would be the tenth person’s z-score if he 
or she was the humble person and claimed a wisdom 
score of only zero, while everyone else rated themselves 
identically with a wisdom score greater than zero? 

“
folks stole the show with their 

.”

Solution to STATS Puzzler

Solution: Using the same algebra and logic, the humble 
tenth person’s z-score would be -3.00.
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