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STUDENT OPPORTUNITIES
in indianapolis
• Reduced registration fees

• Reduced Continuing Education fees
   (advanced only)

• Student mixer

• Placement Service (with reduced fees) 

• Cox Scholarship Fun Run/Walk

• College Bowl with student teams

• State of the art Exhibit Hall

• Mix and mingle with renowned statisticians
   and other students 

• Technical presentations
www.amstat.org/meetings/jsm/2000

The 2000 Joint Statistical 
Meetings - Continuing 
Education Program seeks stu-

dent monitors for its educational pre-
sentations. CE presentations will be 
held at the Westin Hotel—
Indianapolis from Saturday, August 12 
to Wednesday, August 16.  

Student monitors are expected to: 
■ Attend a brief mandatory monitor 

training session on-site where important 
and last minute information will be 
explained.

■ Be available for the entire presen-

tation.

What are the responsibilities of a 
Student Monitor?

■ Pick up required materials, text-
books, etc. for presentation he or she 
will  monitor.

■ Handle registrants — check them 
into the course, hand out required 
materials and respond to inquiries

■ Evaluations — Distribute, collect, 
tabulate

If you are interested in participating, 
provide your name, complete mailing 

address (if different during the sum-
mer), email and phone number to 
Patricia Hayden, ASA’s CE Coordinator. 
Send your information either by email 
patricia@amstat.org or by fax to 703-
684-3768. Notification will be sent to 
the Student Monitor when the CE pre-
sentations go on-line. The student mon-
itor will be asked to select the presenta-
tion he or she wishes to monitor. A 
student monitor receives materials from 
the course he or she monitors.   ■

Continuing Education Program  
Seeks Student Monitors
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Celebrating Diversity

Dear STATS Readers:

I am encouraging everyone to attend this year’s 
JSM, which will be held in Indianapolis, Indiana 
from August 13, 2000 through August 17, 2000. 
The title of this year’s theme is “Celebrate Diversity 
in Statistics.” There are many activities directly 
arranged for students, such as the Student Mixer, 
the College Bowl, the Video Theater, The Gertrude 
Cox Scholarship Run, and much more. It is a great 
place to meet fellow students, who share your 
interests in data analysis, computing, math, etc. 
The College Bowl is a unique opportunity for you 
and your classmates to pit your skills against those 
of others across the country. Will the University of 
Florida repeat as this year’s College Bowl 
Champions or will a perennial power such as the 
University of Iowa or Iowa State University reclaim 
the title? See Mark Payton’s wonderful article on 
last year’s College Bowl competition in this issue.

Can’t afford the trip? Notice the advertisement 
on page 11 of the preceding issue of STATS for the 
Data Challenge by Capital One, which offers a grand 
prize of $2,500 in cash and an all-expense paid 
trip to JSM to receive the award. The Continuing 
Education Courses may allow you to obtain a 
stipend and attend an informative session on a 
current topic free. See Michelle Larson’s article on 
this little known opportunity for students in 
STATS, Issue 25, 1999, pg. 14 and the ad on the 
inside of the front cover of this issue..

■ Feature Articles
This issue echoes the JSM theme, Celebrate 

Diversity in Statistics, through both new and 
timeless articles. Perhaps you have heard of the 
emerging topic of Environmental Justice. Lance 
Waller of Emory University and Erin Conlon of the 
University of Washington provide you with a lively 
discussion of many prominent issues related to 
environmental risk assessment. Certainly your 

community has a landfill or a sewage treatment 
facility. They are not likely to be located in affluent 
parts of town. If they are in less affluent areas, has 
the community committed environmental racism? 
See how important the nation’s Geographical 
Information Systems (GIS) are to this area of 
research. The data obtained from the GIS are used 
to measure race and exposure in an effort to 
determine equity or fairness in environmental risk. 

In my office sits a quincunx, which was 
originally developed by Sir Francis Galton to 
illustrate the normal approximation to the 
binomial distribution. My son, Greg, and I built 
one in 1987 as part of his science fair project. In 
this issue, Mark and Greg Piepel recount Mark’s 
science fair project in this timeless father-son 
tradition. You will be introduced to a very clear 
discussion of mixture experiments as they relate to 
the density and water capacity of soil composition.

■ Column Articles
In this edition of AP STATS, Bob Stephenson 

and Hal Stern, the Edior of Chance, discuss the 
important topic of randomization in designed 
experiments. Follow their discussion on systematic 
versus randomized assignment in an agricultural 
experiment involving two hybrids of corn. We 
hope that our pre-college teachers will make use of 
this enlightening example.

In the Column, Student Voices, Jackie Miller 
of Ohio State University gives you a glimpse at the 
process of becoming a statistics educator. She 
discusses many pedagogical techniques and 
explains their places in our discipline. She refers to 
the learning theories of giants, such as Piaget, who 
have profoundly effected quantitative disciplines. 
Her one-of-a-kind program speaks eloquently for 
diversity in statistics education. 

Outlier…s will be back next fall. Stay tuned 
and we hope to see you in Indianapolis.

Editor’s Column

Jerome P. Keating



“Environmental justice” describes the equitable 
sharing (and reducing) of burdens due to 
environmental hazards across all sociodemographic 
groups. The issue has seen considerable debate in 
government, policy, and legal circles over the last 
decade. A presidential Executive Order requires 
assessments of environmental justice by all federal 
agencies, but operational definitions and methods 
for assessment remain subject to debate. We briefly 
review the development of the issue, definitions, 
and recent  pol icy decis ions re lat ing to 
environmental justice, then focus on several 
statistical issues involved. The issue is not purely a 
statistical one, yet development of accurate 
statistical summaries and inferences plays a key role 
in improving assessments of environmental justice.

■ 1. What is Environmental Justice?
The question of siting of a “locally unwanted 

land use” (LULU), particularly a source of 
environmental hazard, usually results in a response 
of “not in my backyard” (NIMBY). In determining 
where to place the nation’s waste, “somewhere else” 
is an answer with strong local support but limited 
global applicability.

The phrases “environmental justice” (EJ) and 
“environmental equity” appear increasingly in 
environmental policy, environmental regulations, 
legal proceedings and the press. The phrases refer 
to a situation where no population subgroup 
carries an undue excess burden due to 
environmental hazards. Of particular interest are 
subpopulations defined by racial groups or 
socioeconomic status, in order to determine if 
historically disenfranchised populations are 
bear ing the brunt of  i l l  e ffects  due to 
environmental hazards. In other words, do we as a 
nation tend to dump our waste in neighborhoods 
with high proportions of minority racial groups 

LULU? NIMBY!
Statistical Issues in 
Assessments of 
Environmental Justice

and/or the poor? 
The Institute of Medicine, a branch of the 

National Academy of Sciences, recently released a 
report by its Committee on Environmental Justice 
summarizing many of the issues associated with 
environmental justice (Institute of Medicine, 
1999). We will briefly review some issues outlined 
in the report, but quickly move to statistical issues 
associated with environmental justice assessments. 
We refer interested readers to the report for more 
details and a list of related references. 

Racial and socioeconomic disparities in the 
prevalence of health effects are well-known and 
well-documented (see for example, the May 1997 
issue of American Journal of Public Health, pp. 740-
838 for a series of recent articles). While the 
distribution of socioeconomic status differs 
between racial groups, health differences are 
observed even after adjusting for socioeconomic 
status (Kingston and Smith 1997). One reason 
postulated for this difference is disproportionate 
exposure to environmental hazards by minority 
racial groups. 

Following an investigation of this hypothesis, 
the Commission for Racial Justice of the United 
Church of Christ published Toxic Wastes and Race 
in the United States (United Church of Christ 
1987). The authors report increased proportions of 
racial minorities in ZIP codes containing one or 
more toxic waste sites compared to those 
containing no waste sites. The report focused 
national attention on “environmental racism”, and 
the United States Environmental Protection Agency 
formed its Office of Environmental Equity (now 
Office of Environmental Justice) in November 
1992 (Sexton, Olden and Johnson 1993). 

In 1994, President Clinton issued Executive 
Order 12898: “Federal Actions to Address 
Environmental Justice in Minority Populations and 
Low-Income Populations”. The order requires each 
federal agency to “analyze the environmental 
effects, including human health, economic, and 
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social effects” of federally-sponsored programs. 
One result of the executive order is that all 
agencies receiving federal funds must perform 
environmental justice assessments of the impact of 
their work. In addition to the siting of hazardous 
waste sites, this applies to the building of roads, 
and any other project receiving part or all of its 
funding from the U.S. government. 

As you might expect, the issue is controversial 
and can be quite political. The issue falls under the 
general category of “mandated science” or research 
conducted primarily for decision-making purposes 
(Salter 1988). While most will agree that the 
concept of environmental justice is a worthwhile 
goal for society, little agreement exists on how to 
operationalize, evaluate, and quantify the issue. 
Politics aside, there are many interesting statistical 
issues involved in assessing environmental justice. 
We will explore some of these issues below. The 
key question we wish to address is: Are 
subpopulations subjected to disproportionate 
environmental exposures and their effects?

■ 2. GIS and EJ
Wagener and Williams (1993) suggest that 

assessing environmental  just ice involves 
comparisons of the distribution of three elements 
throughout the population. First, what is the 

distribution of exposure across the study area? 
Second, how are the population’s demographics 
distributed across the study area? Third, how are 
any health or other effects distributed across the study 
area? All three questions involve the geographic 
distribution of values across space. In effect, we may 
think of an environmental justice assessment 
requiring the combination and comparison of a map 
of exposures, a map of population demographics, 
and a map of outcomes possibly due to the 
exposures. Geographic Information Systems (GIS’s) 
provide a computational way to combine and 
display spatially referenced information, and we 
focus our attention on the use of GIS’s in 
assessments of environmental justice. 

A geographic information system (GIS) is a 
collection of computer software routines for 
capturing, storing, analyzing and displaying 
spatially-referenced data. A computer system is 
considered a GIS if it can perform spatial operations 
on data and use latitude and longitude and other 
spatial information to answer geographic questions 
such as: “what proportion of the population within 
1 kilometer of a toxic waste site has a certain 
disease?”, and “what are the locations of pollution 
monitoring stations in a state?” (ESRI, 1990-1995.) 

GIS databases consist primarily of two file 
formats, vector (line-type) and raster (image-type). 
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The vector format stores geographic features such as 
points, lines and areas as a series of coordinates with 
their associated observed or measured values referred 
to as “attributes”. Point data include location 
coordinates and an attribute value. Line data include 
connected segments such as streets, rivers and 
administrative boundaries and an attribute value. 
Area data include polygons such as census tracts, 
counties and states and an associated attribute value 
for the area. In contrast, the raster format stores 
geographic information as a grid structure, or file of 
pixels (picture cells). Examples of raster files include 
remotely sensed data from satellites such as 
vegetation cover or weather data; other applications 
using raster files include magnetic resonance 
imaging, radar, and electron microscope imaging. 
Most GIS’s are based on the vector file format, but 
allow for use of raster data (Croner et al. 1996). 

A GIS stores databases for many attribute values, 
often from different sources; examples include street 
names and addresses, exposure sites, population 
counts, residences of disease cases, demographic data 
such as age, race, and socioeconomic variables, and 
geographic features such as rivers and lakes. The GIS 
links each of these georeferenced databases and their 
attribute values through an internal relational 
database that associates values from common points, 
lines or areas. The maps of attribute values are 
considered “layers” by the GIS and can be displayed 
simultaneously. The relational database manager 
allows selection on the basis of attributes so that 
features of the data can be highlighted or 
summarized. One method of highlighting is 
“buffering”, which allows the user to find features 
within a given distance (e.g. 1 kilometer) of a point, 
line, or area anywhere on a given map. The user can 
select features from one or more attribute layers that 
fall partly or entirely within the buffer (ESRI 1996, 
Clarke et al. 1996). Figure 1 provides examples of 
point, line, and area buffers. 

The layering and buffering features of GIS are 
important tools in assessing environmental justice. 
The distributions of the three elements of 
environmental justice of (exposure, population 
demographics and outcomes) define three data 
layers which can be linked through a GIS. The 
buffering feature allows the user to locate specific 
areas of interest and to calculate exposures and 
outcomes for the chosen subregions using the 
various data layers, and is in wide use in 
environmental justice assessments as outlined below.

■ 3. Statistical Issues 

3.1 Types of Data 
As with most statistical applications, the 

available data often define the applicable methods 

in assessments of environmental justice. As 
mentioned above, the key components of an EJ 
assessment involve the definition of population 
subgroups, measurement of exposures, and the 
measurement of outcomes. 

Population: The first component involves 
demographic data primarily from the United States 
Census  rega rd ing  r ace ,  e thn i c i t y,  and 
socioeconomic status. Due to confidentiality 
restrictions, such data are not available by 
household, but rather as summaries for various 
sets of small areas. Counties partition states, census 
tracts partition counties, census block groups 
partition tracts, and blocks partition block groups. 
Figure 2 shows the boundaries of the 499 census 
tracts (1990 census) for Allegheny County, 
Pennsylvania. Census summaries are also available 
for ZIP codes, as defined by the United States 
Postal Service. However, ZIP codes may change at 
any time depending on the needs of the postal 
system, while tracts, block groups, and blocks are 
generally fixed at least for the 10 years between 
each census. 

Most EJ assessments treat census values as 
fixed, measured, and static values. In reality, census 
data are combinations of enumeration and sampled 
data (see Billard 1999 for an overview). 
Immigration and emigration within and between 
census regions certainly occur and provide further 
uncertainty in the data. Few EJ assessments 
explicitly consider the dynamical nature of the 
population’s measured sociodemographic structure. 
Such considerations using population projections 
and local samples provide ground for further 
statistical developments. 

Exposure: The second component involves 
measurement of environmental exposures received 
by individuals in the study area. Such individual-
level data typically are only available for particular 
exposures in particular individuals (e.g. in an 
occupational cohort of workers in a nickel 
refinery), and not regularly measured in the 
general population. Environmental monitoring of 
ambient levels of potential environmental hazards 
and developments in the statistical design and 
analysis of environmental monitoring networks 
increase each year, but widely available, widescale 
information on the distribution of environmental 
exposures remains rare. Note that accurate 
measurement of the ambient level of a contaminant 
at a given location may not correspond directly to 
the exposure received by an individual at that 
location. The dose received depends on factors 
such as the individual’s respiration rate (for 
inhalation), hand-mouth contact (for ingestion), 
and many others. As an example, Wallace et al. 
(1985) report that the best predictors of an 
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individual’s exposure to benzene are whether he or 
she smokes, and how often he or she drives or 
fuels a car, not estimated ambient exposures or 
proximity to releases. 

Despite results such as those of Wallace et al. 
(1985), researchers often base EJ assessments on 
proximity to hazardous waste facilities or industrial 
releases of toxic chemicals and compounds, due 
primarily to the lack of widely-available individual 
exposure measurements and comprehensive 
ambient exposure measurements. Many EJ 
assessments use the United States’ Environmental 
Protection Agency’s (EPA’s) Toxic Chemical Release 
Inventory (TRI). A company releasing or 
transferring any of approximately 300 chemicals 
during the course of a year generally must report 
the release or transfer to the EPA. The TRI is not a 
complete listing of toxic releases as small 
businesses and government facilities are currently 
exempt from reporting. The TRI does not report 
exposure, merely annual releases in wide ranges of 
thousands of pounds (e.g. 10,000-99,999 pounds 
per year). As a result, many EJ assessments ignore 
the reported release amounts and simply use the 
locations of TRI sites, defining “exposure” in terms 
of proximity to the release locations. TRI sites 

reporting releases in Allegheny County for 1990 
appear in Figure 2.

Outcomes: The third component involves 
possible adverse outcomes including health events 
such as disease incidence or mortality, and 
measures of healthcare utilization (e.g. the number 
of asthma visits to a particular emergency room). 
See Carlin and Xia (1999) for examples of both 
types of outcomes. Death certificates record the 
primary cause(s) of death, health surveys report 
health outcomes in a sample of individuals, and 
disease registries record the incident (new) and 
prevalent (existing) cases of “reportable” diseases 
(diseases health care workers are required to report 
to state or federal agencies responsible for 
maintaining registries). However, registries tend to 
vary from state to state as to which diseases are 
reported and in what format. For the purposes of 
this paper, we will ignore particular outcomes, but 
discuss possibilities for moving from exposure-
based to risk-based EJ assessments in Section 4 
below.

Note that all three components of an EJ 
assessment involve data originally collected for 
other purposes. Most EJ assessments do not follow 
traditional patterns of statistical design, rather they 
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1990 United States Census, and sites reporting toxic releases to the Toxic Release Inventory in 1990.
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involve merging data collected by different 
agencies for different purposes. As such we are 
limited in the conclusions we can draw, especially 
with respect to any notion of causation. The data 
are observational rather than experimental, and 
demographic data are “ecologic” meaning that they 
are summaries over groups rather than specific 
measurements on individuals (see Morgenstern 
1998, for an overview of the analysis of ecologic 
data). For example, we may know the proportion 
of individuals in each population subgroup for a 
particular county, but may not know the 
geographical distribution of the subgroups within 
the county. If this county contains a source of 
environmental hazard and has a high proportion of 
a particular subgroup, we may be tempted to 
conclude evidence of environmental injustice. 
However, from such data, we could not distinguish 
between a situation where the subgroup of interest 
was tightly clustered around the hazard (indicating 
even stronger inequity than we would observe at 
the county level), a situation where the subgroups 
were entirely integrated (indicating little evidence 
of inequity within the county, but evidence of 
inequity at the county level), or a situation where 
the subgroup of interest is actually clustered away 
from the source (indicating a different direction of 
inequity within the county than at the county 

level). To minimize the impact of this so-called 
“ecologic fallacy”, assessors often use the smallest 
geographic units available that still provide 
accurate  data .  While  i ssues  re la t ing to 
observational and ecologic data apply to most data 
components, other issues are specific to individual 
components, as outlined below. 

3.2 Measuring “race”
The most common subpopulations of interest 

in EJ assessments are groups defined by race. 
Measurement of race largely depends on self-
identification with a choice from a set of possible 
responses. The 1990 U.S. Census data bases race 
on respondents choosing the race they most closely 
identified with from the options provided (e.g. 
“White”, “Black”, “American Indian”, “Asian or 
Pacific Islander”, or “Other”). A separate question 
in the census determines Hispanic origin, so 
respondents identifying themselves as being of 
Hispanic origin were also requested to choose a 
race category from the list above. The 2000 Census 
will allow respondents to pick more than one race 
category, further complicating the data structure 
and format.

3.3 Measuring “exposure”
As mentioned above, EJ assessments often 
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Allegheny County, Pennsylvania containing TRI sites.
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utilize location of hazards to define surrogates of 
ambient exposures due to the hazards, which in 
turn are surrogates of individual exposures 
received from the hazard. Waller et al. (1997) use 
the term “exposure potential” to refer to such 
surrogates, to clearly differentiate from measured 
exposures. The particular form of such exposure 
potentials generally falls into one of two categories. 
The first is the “container” model (Talen and 
Anselin 1998, referred to as a “coincidence” 
structure by Sheppard et al. 1999) where 
individuals are considered “exposed” if they reside 
in a census region (or ZIP code) containing any 
source of hazard (e.g. a TRI site). The map to the 
right in Figure 3 illustrates the tracts labeled 
“exposed” in Allegheny County for 1990 under the 
container model. The second approach is a 
proximity or distance based model where exposure 
potential is defined by the distance from a hazard. 
The simpliest proximity approach is based on GIS 

defined “buffers” where individuals living within a 
certain distance of a hazard location are defined as 
“exposed” and those outside the buffer are not. 
Such measures are very common in EJ assessments; 
one compares the proportion of individuals in each 
subgroup for individuals within buffer regions to 
the proportions for individuals outside buffer 
regions. The map to the left in Figure 3 illustrates 2 
and 4 km buffers around the TRI sites in Allegheny 
County for 1990. To determine the number of 
individuals residing within the buffer regions, one 
has to account for the fact that buffer boundaries 
do not match census boundaries. Therefore, one 
either includes all tracts having any portion within 
the buffer in an extension of the container model 
(an example of this appears in Figure 4), or one 
assumes populations are uniformly distributed 
within census regions and allocates a proportion of 
the population corresponding to the area of the 
region falling within the buffer. Other proximity-

 8    STATS #28  ■  SPRING 2000

Figure 4. Census tracts intersecting various distance buffers around sites reporting releases to the 1990 Toxic Release Inventory 
in Allegheny County, Pennsylvania. Considering these tracts “exposed” represents an extension of the container model.
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based surrogates for exposure involve distance-
decay functions where one defines exposure 
potential as a decreasing function of distance.

Both the container and proximity models 
assume accurate location data. Scott et al. (1997) 
investigate the accuracy of 620 TRI (1987-1992) 
locations from South Carolina using GIS to locate 
the reported street address, and global positioning 
systems (GPS’s) to find the latitude and longitude 
of each site. They find that 271 of the 620 (48%) 
of the reported latitude and longitude values 
placed the site in the wrong census block group. 
While most adjustments were relatively small, 
Scott et al. (1997) report substantial effects of 
location on environmental justice assessments for 
one site whose true location was more than 10,500 
meters from its reported location. The issue of data 
quality is rather sobering and reinforces the need 
for inclusion of some measure of accuracy for both 
attribute and location data.

3.4 Measuring equity/fairness
Once we have data for demographics, 

exposures (or some proxy measure), and (possibly) 
outcomes, we next address the issue of equity or 
fairness in exposures to hazards among our 
demographically defined subgroups. What is fair? 
Should hazards be equally distributed among 
population subgroups? How should exposures be 
adjusted as demographics change in a particular 
region? Should all parties have equal say in siting 
decisions? Is an equitably decided location still fair 
when new research reveals excess risk of disease 
due to a substance previously thought to be safe? 
Phillips and Sexton (1999) provide an interesting 
and thorough discussion of various definitions of 
“fair” in EJ from an environmental policy 
standpoint.

For the purposes of this paper, we will 
consider our assessment of equity confined to 
assessment of differences in subpopulations’ 
exposure potential. There are two approaches we 
could consider. First,  we could compare 
summaries of exposure potential experienced by 
each subgroup. For example, is the mean exposure 
potential experienced within subgroup A different 
from that experienced within subgroup B? 
Inference typically follows a two-sample t-test, or 

similar comparison of sample means. Second, we 
could compare the proportion of each subgroup 
experiencing a common exposure potential value. 
For example, what proportion of subgroup A 
receives exposure x or higher? How does this 
proportion compare to the overall proportion of 
subgroup A across the study area? In this case, 
inference follows a comparison of proportions, 
adjusting for the fact that the exposed individuals 
represent a subset of the total population in 
subgroup A. The first approach is similar to 
diversity indices utilized in econometrics to 
compare incomes between population subgroups 
(Gastwirth 1989, Nayak and Gastwirth 1989). 
Waller et al. (1997) argue that the second approach 
may be more appropriate for EJ assessments, 
particularly if one is interested in using observed 
inequities in exposure (potential) to predict 
resulting inequities in risk of particular outcomes. 
In this case, a particular exposure value (say x) 
translates to a risk via a dose-response relationship. 
The  propor t ion  o f  each  subpopula t ion 
experiencing a given exposure potential is 
translated to the risks induced by that level of 
exposure potential. Naturally, the accuracy of such 
an approach critically depends on the accuracy of 
the model linking dose and response.

The results obtained depend on the particular 
form of exposure potential used. To illustrate, 
consider the Allegheny County data. Table 1 
summarizes the raw population proportions for 
two race groups from the 1990 census for the 
container model, and various proximity models. 
For the buffer analysis, we summarize the 
proportion of each population subgroup residing 
in tracts having any portion within the buffer (see 
Figure 4). We limit the summary to tracts within 
Allegheny County (even though tracts in the 
neighboring counties intersect some buffers). Note 
the differing amounts of inequity suggested by the 
crude proportions in Table 1. Also note that since 
most tracts are more than 1 km across, there is 
considerable overlap in the sets of tracts associated 
with each buffer radius. Even though results 
change with buffer radius, the magnitude of the 
change is small due to the large amount of overlap.

Waller et al. (1997) consider the use of 
cumulative distribution functions (CDF’s) of 
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Table 1. Percent of residents (U.S. Census) identifying selves as “black” or “white” for tracts containing Toxic Release 
Inventory sites or intersecting buffers around TRI sites in Allegheny County, Pennsylvania. 

Race    Total county     Distance to nearest TRI site   
category proportions  Site in Tract   1 km   2 km   3km   4km 

“Black”   11.20%   10.64%   11.28%   12.59%   12.63%   12.05% 
“White”   87.56%   88.51%   87.75%   86.19%   86.07%   86.66% 
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exposure  potent i a l  va lues  wi th in  each 
subpopulation as a way to summarize differences 
across potential buffer cutoffs. Specifically, suppose 
we wish to compare the “black” and “white” 
subgroups with respect to an exposure potential 
defined by the inverse distance of the center of 
each census tract to the nearest TRI site. For each 
tract, we find the minimum distance to any TRI 
site, then we order tracts by the inverse of these 
distances (our exposure potential) within each 
subpopulation. For any value of exposure 
potential, x, we find the proportion of the total 
black population in Allegheny County residing in 
tracts with exposure potential less than or equal to 
x. Plotting this proportion versus a wide range of 
exposure potential values results in a graph of the 
CDF for this subpopulation. We perform a similar 
exercise for the white population. Inference and 
descriptive statistics comparing two CDF’s include 
Kolmogorov-Smirnov tests, Cramér-Von Mises 
statistics, and familiar QQ and PP plots. 

The top graph in Figure 5 illustrates the two 
CDF curves for Allegheny County, based on the 

inverse distance to the nearest TRI site. We also 
consider exposure potentials based on the inverse 
distance to the nearest TRI site emitting certain 
chemicals. Figure 6 shows the locations of all TRI 
sites with a 4 km buffer, the locations of TRI sites 
reporting releases of toluene and/or benzene (all 8 
benzene sites also reported releases of toluene), 
and the proportion of each tract population 
responding “black” to the 1990 Census race 
question. For all three measures of exposure 
potential, we see a clear difference between the 
curves. As indicated by the vertical line in Figure 5, 
slightly over 20% of the white population 
experiences an exposure potential less than x = 
0.25 for all TRI sites (i.e. they live more than 4 km 
from the nearest TRI site), while only 2.2% of the 
black population experiences corresponding 
exposure potentials. That is, only 2.2% of the 
county’s black population resides outside tracts 
intersecting the 4 km buffers shown in Figure 6. 
For s i tes  report ing re leases  of  toluene, 
approximately 50% of the white population resides 
further than 4 km away, corresponding to only 
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Figure 5. Cumulative distribution functions of an exposure potential (see text) defined by the inverse of the distance between 
the nearest TRI site and the centroid of the census tract of residence for persons identifying themselves as “black” or “white” 
in the 1990 Census for Allegheny County, Pennsylvania. The vertical line at x = 0.25 km-1 provides reference to the 
proportion of each subpopulation residing farther than 4 km from the nearest TRI site.
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22.5% of the black population. There is less 
disparity in sites reporting benzene releases, and 
less exposure potential in the general population. 
(Since there are fewer sites, distances between tract 
centroids and sites are generally larger). Note that 
the “top” CDF in each graph in Figure 5 
corresponds to the subpopulation experiencing 
relatively higher exposure potential values (the 
exposure potential  density would be shifted 
toward higher values for the associated 
subpopulation). Also, note that the CDF’s reveal 
comparisons for any choice of x.

Rather than seeing the different results from 
different methods as “right” or “wrong”, it is 
important to realize that each approach addresses 
only particular aspects of our overall research 
question. That is, we want to answer: “Are 
subpopulations subjected to disproportionate 
environmental exposures?” Using the container 
model, we answer: “Do subpopulation proportions 

differ between tracts containing TRI sites, and 
those without TRI sites?” Using a buffer-based 
approach, we answer: “Do subpopulation 
proportions differ between people residing within 
the specified radius, and those residing further 
away?” We can also think of this issue in terms of 
conditional probabilities. For example, suppose pB 
and pW represent the proportion “exposed” in the 
black and white subpopulations, respectively. 
(Contrast these proportions to the proportion of 
the total “exposed” in each subpopulation as 
reported in Figure 1). Then it is certainly possible 
that Pr[pB > pw |container “exposures”] ≠ Pr[pB > 
pw|buffer “exposures”] ≠ Pr[pB > pw|proximity 
“exposures”]. The differences are subtle, but crucial 
for making sense of seemingly differing results. An 
example involves the United Church of Christ 
(1987) report which essentially uses a container-
based approach and National Priority List 
Superfund sites (rather than TRI sites), and a 
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Figure 6. Four-kilometer buffers around all Toxic Release Inventory sites (1990 TRI), and around those sites reporting releases 
of toluene and benzene. Also, the proportion residing in each census tract responding “black” to the race question in the 
1990 Census. The buffer regions allow comparison to the exposure x = 0.25 km-1 in Figure 5 (see text).
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follow-up analysis by Anderton et al. (1994) using 
census tracts and a general list of Toxic Storage and 
Disposal Sites (compiled from the TRI and other 
sources). The UCC report finds evidence of 
increased percent minority population (non-whites 
and white Hispanics) in ZIP codes containing the 
sites of interest. In contrast, Anderton et al. (1994) 
find little consistent evidence for a general pattern 
of environmental inequity in the tract level data. 
Anderton et al. (1994) provide a thorough 
discussion of reasons for the differences, and 
conclude that tract level analysis is more 
appropriate. The level of data aggregation is a key 
element of any EJ assessment, and clearly provides 
a context within which one must interpret results. 
While Anderton et al. (1994) may argue that tract-
level analysis provides a more accurate picture of 
underlying inequities than ZIP code-level analysis, 
it is important to realize that one is merely 
exchanging one set of limitations for another. The 
value placed on any set of limitations inevitably 
includes some subjectivity and is likely to vary 
between the different parties interested in EJ issues.

■ 4. Opportunities: where do we go 
from here?

There remain many areas for future statistical 
work in the area of environmental justice, and we 
describe two such areas here. First, one may wish 
to include outcome data to move from assessments 
of exposure inequities to risk inequities. Second, 
the language of “environmental justice” is often 
particular to the political structure of the United 
States, however, many related areas of study occur 
throughout the scientific literature and the 
integration of such methods and theories may 
improve environmental justice assessments.

Including outcome data in environmental 
justice assessments seems a natural goal. However, 
there is some debate over whether it is absolutely 
necessary. First of all, including particular 
outcomes necessarily makes the assessment more 
restrictive, in that an observed difference in 
exposures (or potentials) would be discounted if 
one could not link exposure differences to 
observable differences in the occurrence of the 
outcome of interest. Second, it is difficult to 
observe smal l  increases  in r i sk due to 
environmental factors, even in the best of data. The 
effect needs to be strong and consistent to be 
detectable in observational data. As mentioned 
above, environmental justice assessments typically 
involve data collected for other purposes linked 
through a GIS. In effect, demanding that an 
assessment make the link to a particular outcome 
before positive identification of environmental 
injustice may require more evidence than the data 

will be able to provide. In statistical terms, the 
power to detect the effect may be so small that one 
rarely observes a “statistically significant” result, 
even if a practically significant difference exists.

This is not to say that including outcomes is 
impossible or undesirable. Waller et al. (1997) 
describe an approach where they find the area 
between the exposure potential CDF’s as a 
summary of environmental justice across all buffer 
areas. To emphasize exposure differences relating 
to the largest increases in disease risk, they weight 
the integrand by the slope of a fitted dose response 
relationship. They embed the approach in a 
hierarchical modeling framework and use Bayesian 
methods to provide inference. The Bayesian 
approach allows proper accounting of the multiple 
levels of uncertainty inherent in the assessment, 
and provides posterior inference regarding the 
index of injustice defined by the weighted, 
integrated exposure difference. They illustrate the 
approach using Allegheny County leukemia data. 
The method shows promise, but a thorough 
evaluation of its performance requires more 
complete data.

While the environmental justice movement 
has been a growing grassroots phenomenon in the 
United States since the mid-to-late 1980’s, the issue 
has links to several areas of related research in 
other fields. The geography literature contains a 
considerable number of references addressing 
social equity in terms of access to public assets 
such as libraries or parks (see Talen and Anselin 
1998 for a nice description of the spatial and 
statistical issues involved). Such studies assess 
equity in access to a perceived “good” feature, very 
similar to the environmental justice assessment of 
equity in avoidance to a perceived “bad” feature. Of 
particular interest in the access equity literature is 
the notion of a “spatial constraint” (Hodge and 
Gatrell 1976, McLafferty and Ghosh, 1982, and 
McLafferty 1984), i.e. the current structure of the 
population limits the amount of equity that can be 
achieved. For various historical reasons, the 
current distribution of population subgroups is 
fairly segregated, so that there are very few 
locations which provide equal access (or 
avoidance) to all subgroups. Waller et al. (1999) 
illustrate this for Allegheny County and show that 
potential sites for equitably locating a new 
environmental hazard correspond to a single 
contour line winding through the county. The 
precise location of the contour depends on the 
particular measure of inequity used.

International research investigating the public 
health impacts of income disparities also bears 
similarity to methods for environmental justice 
assessments. As one example, Szwarcwald et al. 
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(1999) use the Gini coefficient (a measure of 
uncertainty popular in econometrics) to investigate 
the impact of income inequality on homicide rates 
in Rio de Janeiro, Brazil. Similar measures could 
explore differences in environmental exposures 
between income groups. Other approaches use 
“deprivation indices” to summarize differences in 
socioeconomic status. See Jolley et al. (1992) for an 
example addressing differences in health outcomes 
with respect to such indices. Similar methods may 
prove useful in future environmental justices 
assessments in the United States.

In  summary,  we  f ind  the  i s sue  o f 
environmental justice provides a wealth of 
interesting statistical opportunities. In the 
framework of mandated science, assessments must 
be done. The statistician’s goal is to improve the 
implementation and interpretation of these 
assessments. Unlike many standard statistical 
problems where there is some unknown “true” 
value waiting to be discovered either through 
estimation or modeling, the “true” amount of 
environmental  inequity depends on the 
substance(s) under consideration, the aggregation 
level of the data, and the particular type of 
“inequity” under consideration. Hampering any 
efforts for accurate assessment are issues in data 
availability and data quality. Numerical results 
cannot be interpreted outside of the full context of 
these issues, and the challenge for the statistician is 
to include such constraints in the analysis, and 
clearly communicate all results conditional on the 
operational definitions made in the process.
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■ 1. Introduction

For a middle school science fair project, Mark 
conducted a mixture experiment to study how soil 
composition affects soil density and water capacity. 
Mark mixed different proportions of sand, silt, and 
clay to simulate different soil compositions. The 
idea to study density and water capacity of soil 
came from searching lists of science fair topics on 
the Internet. The idea of soil being made of sand, 
silt, and clay came from a science catalog. We 
combined these two ideas for Mark’s science fair 
project. Through research, Mark learned that soil 
density and water capacity are important for many 
reasons. For example, the water capacity of soil is 
important for irrigation of crops and gardens, and 
for absorption of rain water or melting snow. 
Following the science fair, Greg (Mark’s dad) 
applied mixture experiment data analysis methods, 
which were beyond Mark’s middle school 
capabilities.

A mixture experiment involves mixing two or 
more components in various proportions, and 
observing the resulting values of one or more 
response variables. In a basic mixture experiment, 
a response is assumed to depend only on the 
relative proportions of the components, and not on 
the total amount. The component proportions are 
subject to the constraints

 0 ≤ xi ≤ 1, i = 1, 2, ..., q and ∑ xi = 1, (1)

and may be subject to additional constraints on 
component proportions or linear combinations of 

component proportions. Mixture experiments can 
be augmented to also investigate the effect of a 
total amount variable, or the effects of one or more 
process variables (Cornell 1990, Piepel and Cornell 
1994).

In the rest of the article, we explain how Mark 
collected data using a mixture experiment design 
and analyzed the data using simple graphs. We also 
present the results of Greg’s work to develop and 
validate mixture experiment models, and to study 
how the soil components affected soil density and 
water capacity.

■ 2. Experimental Design
Mark mixed sand, silt, and clay in different 

propor t ions  to  make  10  so i l  mix tures 
corresponding to an augmented simplex centroid 
(ASC) design (Cornell 1990, p. 73). As shown in 
Figure 1, the three-component ASC design consists 
of the three vertices, three edge midpoints, three 
interior points, and overall centroid of the three-
component simplex. Mark repeated the experiment 
(described in the next section) four times using a 
randomized complete block arrangement.

■ 3. Materials and Experimental 
Procedure

We got free sand from a local concrete 
company and bought the clay from a ceramics 
store. We dug the silt from the Yakima River delta. 
Because the sand and river silt were wet, we spread 
them in thin layers on two large plastic sheets to 
dry. Mark used a small shovel to turn the sand and 
silt, and a spatula to smash silt clods.

Mark used a measuring cup to measure the 
sand, silt, and clay to make soils of the 10 different 
compositions shown in Figure 1. He used a knife 
to level each full measuring cup so the volumes 
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would be accurate. Mark then put the measured 
volumes of sand, silt, and clay in heavy-duty, zip-
top plastic bags and shook them until evenly 
mixed. Each bag was marked with the number of 
the soil mixture given in Figure 1.

Mark measured and mixed the sand, silt, and 
clay to form the 10 soils only once (not four times) 
because of time constraints. Thus, the four 
replicates (blocks) do not include variations from 
measuring and mixing the soils. However, 
preliminary testing showed that variations in 
measuring and mixing soils was small compared to 
the variations in the remaining steps of the process. 
Hence, we decided this “limitation” in replicating 
the experiment would have little consequence.

The steps of the procedure Mark used to 
measure the density and water capacity of each soil 
mixture are listed in the appendix. The steps were 
adapted and combined from procedures described 
by Campbell (1992) and Cassel and Nielsen (1986). 
For each of the four replicates (blocks), Mark tested 
the 10 soil mixtures and measured the responses in 
a different random order. A photo during Step 7 of 
the procedure is shown in Figure 2.

The responses of interest are soil density, water 
capacity by volume (WCV), and water capacity by 
mass (WCM). The formulas for calculating values 
of these responses from measured quantities are 
given in Equations (A.1), (A.2), and (A.3) of the 
appendix.

■ 4. Results
Mark wrote the results of the procedure steps 

on data sheets in a notebook. The density, WCV, 
and WCM measurements from the four replicates 
of the experiment are given in Table 1. Several 
values in Table 1 are enclosed in parentheses, 
denoting outlying data values that were not used in 
subsequent data summaries and analyses. Mark 
decided which observations to declare outliers by 
comparing response values for replicate tests, and 
by referring to observations he made on data/
observation sheets during the experiments. In a 
few cases, the wet soil in the cylinder separated 
into two parts, with an air pocket in between. The 
air pocket may have slowed the water from moving 
lower in the cylinder, which would cause the water 
capacity of the soil to be too high. In a few other 
cases, the soil components were noticeably 
segmented in the top portion of the cylinder, 
which was judged to have yielded outlying WCM 
values.

Evidence of a block effect was inconsistent 
across the three responses, so we decided to treat 
the data as if there were no block effects. Mark 
used Figures 3, 4, and 5 to show the averages (over 
the four replicates) of density, WCV, and WCM for 

each soil mixture. The outliers shown by 
parentheses in Table 1 were not used to calculate 
the averages.

Figure 3 shows that when the proportion of 
sand goes from 0 to 2/3, the density goes up, and 
then the density goes down when the proportion 
goes to 1. When the proportions of silt and clay go 
from 0 to 1/3, the density goes up, and then the 
density goes down when the proportions go to 1. 
The density is highest for the soil mixture with 2/3 
sand and 1/6 each of silt and clay. The density is 
lowest for the soil mixture with all clay.

Figure 4 shows that when the proportion of 
sand goes from 0 to 1, the WCV goes down. When 
the proportion of silt goes from 0 to 1, the WCV 
stays about the same. When the proportion of clay 
goes from 0 to 1, the WCV goes up. The WCV is 
highest for the soil mixture with all clay. The WCV 
is lowest for the soil mixture with all sand.

Figure 5 shows that when the proportion of 
sand goes from 0 to 1, the WCM goes down. When 
the proportion of silt goes from 0 to 1/3, the WCM 
goes down, and then the WCM goes up when the 
proportion goes to 1. When the proportion of clay 
goes from 0 to 1, the WCM goes up. The WCM is 
highest for the soil mixture with all clay. The WCM 
is lowest for the soil mixture with all sand.

■ 5. Fitted Mixture Experiment Models
We observed some trends in the density, water 

capacity by mass, and water capacity by volume 
that appear to be related to the proportions of 
sand, silt, and clay in the mixture. These 
observations made us wonder whether we could 
use mixture experiment models to predict the 
density and water capacity of soil as a function of 
the proportions of sand, silt, and clay in the soil. 
Such models, along with analytical procedures for 
determining the proportions of sand, silt, and clay 
in a particular soil, could be used to predict the 
irrigation needs or water absorption properties of a 
particular soil. We present fitted models for soil 
density and WCM below. We do not present 
models for WCV because of space considerations 
and the complications of having “less than” data for 
soil #1.

Cornell (1986, 1990) notes the 10-point 
three-component ASC design supports fitting the 
Scheffé special quartic model:

E(y) = b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3  
 + b23x2x3 + b1123x1

2x2x3 + b1223x1x2
2x3   (2) 

 + b1233x1x2x3
2

as well as the Scheffé special cubic model

E(y) = b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3  
 + b23x2x3 + b123x1x2x3 (3)



ASA

and the Scheffé quadratic model

E(y) = b1x1 + b2x2 + b3x3 + b12x1x2 + b13x1x3  
 + b23x2x3 . (4)

Model (4) contains three linear terms (e.g., 
b1x1) and three quadratic blending terms (e.g., 
b12x1x2). Model (3) contains the same six terms as 
(4), plus the special cubic blending term 
(b123x1x2x3) that provides for modeling response 
surfaces with humps or valleys. Model (2) contains 
the same six terms as (4), plus three special quartic 
terms (e.g., b1123x1

2x2x3) that provide for 
approximating more complicated response surfaces 
(see Cornell 1990). Over many years, practitioners 
have found that models of the forms of (2), (3), 
and (4) adequately approximate the majority of 
mixture experiment response surfaces. We studied 
Figures 3, 4, and 5 to decide that models (2), (3), 
or (4) should provide adequate fits to the soil 

mixture data.
Greg fitted Scheffé mixture experiment models 

of the forms (2), (3), and (4) to the data in Table 1 
to determine which was most appropriate (based 
on lack-of-fit F tests) for each response. Then, he 
sequentially removed nonsignificant (p > 0.10) 
higher-order terms from the complete Scheffé 
model form selected for each response. Greg used 
the Minitab (1998) software to perform the 
regression work. The resulting fitted models for 
soil density and WCM are given in Table 2. A 
reduced form of the special quartic model was 
obtained for soil density, while a reduced quadratic 
model was obtained for WCM. Obtaining different 
mixture model forms for these two responses was 
slightly surprising to Greg, given that soil density 
and WCM have a pairwise correlation of -0.962. 
However, careful study of Figures 3 and 5 (and the 
data plots in Figures 7 and 8 discussed in the next 
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Table 1.  Replicate Data for the Ten Soil Mixtures (a)

 Density (g/ml) Water Capacity by Volume (g/ml)(b) Water Capacity by Mass (%)(c) 

 Replicate Replicate Replicate

Soil# 1 2 3 4 1 2 3 4 1 2 3 4

1 1.64 1.59 1.57 1.63 < 0.130(d) < 0.105(d) < 0.100(d) < 0.100(d) 7.5 8.5 8.0 (4.5)
2 1.38 1.39 1.38 1.53 0.175 0.179 0.182 0.167 12.5 13.0 13.5 10.0
3 0.85 0.88 0.90 0.97 0.227 0.222 0.196 0.217 24.4 24.0 24.5 21.5
4 1.54 1.52 1.60 1.55 (0.312) 0.141 0.128 0.132 9.0 10.0 8.4(e) 8.5
5 1.51 1.61 1.59 1.58 0.172 0.167 0.169 0.169 12.4 11.5 11.0 11.0
6 1.37 1.42 1.44 1.42 0.208 0.196 0.189 0.196 (17.9) 12.5 13.0 13.0
7 1.64 1.64 1.58 1.65 0.175 0.161 0.152 (0.208) 9.5 9.5 10.5 (13.5)
8 1.63 1.68 1.67 1.76 0.143 0.122 0.122 0.119 9.0 8.5 8.5 7.0
9 1.53 1.46 1.54 1.56 0.172 0.156 0.156 0.179 11.5 9.0 11.5 13.5
10 1.19 1.20 1.30 1.41 0.189 0.185 0.196 0.213 17.9 16.5 16.0 15.0

a. Parentheses show data points that Mark identified as outliers by comparing response values for replicate tests and considering 
observations about unusual appearances of wet soil columns made on data sheets.  These data points were excluded from subsequent data 
analyses.
b. Grams of water divided by milliliters of wet soil.
c. Percentage of wet soil that is water = 100 x (grams of water divided by grams of wet soil).
d. All of the soil (pure sand) in the cylinder was wet, so only less than values can be reported.

Figure 4. Average Values of Water Capacity by Volume 
(g/ml) Figure 5.  Average Values of Water Capacity by Mass (%)
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section) reveals differences in the two responses 
sufficient to explain why different mixture model 
forms were obtained.

Table 2 shows the fitted models for soil 
density and WCM have R2 values of 0.949 and 
0.941, respectively. Further, the fitted models do 
not have statistically significant lack-of-fits 
(p-values > 0.10), where “pure error” was 
estimated using the four replicates on each soil. 
These findings suggest the fitted models should do 
an accurate job predicting soil density and water 
capacity of soil mixtures. Section 7 discusses work 
performed to validate the models in Table 2 with 
data not used to develop the models.

■ 6. Effects of Sand, Silt, and Clay
Traditionally, someone determines the effect of 

a variable on a response by changing the variable 
while holding all other variables fixed, and 
observing the changes in the response. This 
procedure is impossible in mixture experiments, 
where an increase in one component must be offset 
by decreases in one or more other components. 
The most common approach for assessing the 
effect of a mixture component on a response is to 
offset an increase in the component with decreases 
in the remaining components while keeping the 
remaining components in the same relative 
proportions as in a reference mixture.

For a simplex mixture region, such as in the 
soil mixture problem, it is traditional to choose the 
overall centroid (1⁄3,1⁄3,1⁄3) as the reference mixture. 
Then, the effect of a component is measured along 
the axis of that component (a line going through 
the overall centroid and the vertex for that 
component). Figure 6 displays the component axes 
for the three-component soil mixture simplex, 
along with the ASC design points. Figure 6 shows 
that the ASC design is an axial design, since all of 
the design points fall on the component axes. 
Hence, we assessed the effects of the components 
by plotting predicted and measured response 
values versus component values along the axes.

Figure 7 shows a plot of measured and 
predicted values of soil density versus values of 
sand, silt, and clay along the respective component 
axes. Figure 8 illustrates a similar plot for WCM. 
The predicted response values are from the fitted 
models in Table 2.

Figures 7 and 8 suggest the proportion of silt 
in soil has a small effect on soil density and water 
capacity compared to the effects of sand and clay. 
Increasing the proportion of clay in a soil mixture 
strongly decreases density and increases water 
capacity. Increasing the proportion of sand in a soil 
mixture tends to moderately increase density until 
the soil is made of higher proportions of sand, in 

which case density decreases. Increasing the 
proportion of sand tends to decrease water 
capacity, until the soil is made of higher 
proportions of sand, at which point the water 
capacity levels off.

The preceding statements about the effects of 
sand, silt, and clay on soil density and water 
capacity summarize general trends. The fitted 
models in Table 2 indicate the three soil 
components do have nonlinear blending effects on 
soil density and water capacity. Hence, general 
trends do not provide a complete summary.

■ 7. Model Validation
To validate the fitted response models in Table 

2, we mixed additional soil samples and tested 
them using the procedure described in the 
appendix. The additional soil mixtures are 
displayed in Figure 9, and their compositions and 
response values are listed in Table 3. We included 
the overall centroid (soil #20) in the validation 
design to provide some basis for verifying that no 
bias in results exists between the original 
experiment (data in Table 1) and the validation 
experiment (data in Table 3).

The results in Table 3 for soil #20 are very 
close to the results previously obtained for soil #7. 
This result suggested to us that there was no 
appreciable bias in the validation experiment 
results compared to the original experiment results.

Table 4 displays predicted values (from the 
models in Table 2), measured values, and 95% 
prediction intervals (95% PI) of soil density and 
WCM for the 10 validation soil compositions. The 
measured values of soil density and WCM are 
within the 95% PI for all 10 of the validation soil 
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Table 2.  Regression Coefficients and Statistics from 
Fitting and Reducing Mixture Models of the Form (2) 

and (4) to the Soil Mixture Experiment Data

Mixture  Water
Experiment Soil Capacity
Model Term Density by Mass 

Sand      1.601 7.288
Silt      1.420 12.029
Clay      0.894 23.855
Sand*Silt 0.156 
Sand*Clay 1.263 -15.911
Silt*Clay 1.010 -18.132
Sand*Silt*Clay  
Sand2 *Silt*Clay 7.529 
Sand*Silt2 *Clay  
Sand*Silt*Clay2 -6.241 
R2 0.949 0.941
s 0.056 1.213
LOF p-value 0.138 0.110



ASA

compositions. Thus, the Scheffé mixture 
polynomial models listed in Table 2 should provide 
excellent predictions of soil density and WCM over 
the whole three-component simplex composition 
space for soil mixtures of sand, silt, and clay.

■ 8. Summary and Recommendations

The density and water capacity of soil depend 
on its proportions of sand, silt, and clay. Sand 
increases density and decreases water capacity. Silt 
decreases density a little, and either increases or 
decreases water capacity, depending on the 
proportions of sand and clay. Clay decreases 
density and increases water capacity. However, 
sand, silt, and clay have nonlinear blending effects 
on soil density and water capacity, so that general 
trends for component effects are not sufficient for 
predicting results. Scheffé quadratic and special 
quartic polynomial mixture models provide for 
adequately predicting soil WCM and density, 
respectively.

Studying the effects of soil composition on the 
density and water capacity of soil using mixture 
experiment methods was a fun and interesting 
middle school science fair project for Mark. The 
project won the middle school grand prize at 
Christ the King School in Richland, Washington, 
and won second place amongst sixth graders in the 
Mid-Columbia regional science fair. We note that 
Mark’s science fair project did not include the 
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Figure 6.  Component Axes Along Which Component 
Effects are Determined, with Augmented Simplex  
Centroid Design Points Superimposed

Figure 7.  Predicted and Measured Values of Soil Density 
(g/ml) Along Component Axes

Figure 8.  Predicted and Measured Values of Water 
Capacity by Mass (%) Along Component Axes

Figure 9.  Soil Mixtures for Model Validation (º) Along 
with ASC Design Soil Mixtures (•)

Table 3.  Soil Compositions and Response Values for 
Validation Soils

Soil    Density WCV WCM
 # Sand Silt Clay (g/ml) (g/ml) (%)

11 3/4 1/4 0 1.58 0.128 7.0
12 1/4 3/4 0 1.48 0.169 11.0
13 0 3/4 1/4 1.50 0.204 12.5
14 0 1/4 3/4 1.16 0.213 17.5
15 1/4 0 3/4 1.31 0.213 14.5
16 3/4 0 1/4 1.68 0.127 8.0
17 5/12 5/12 1/6 1.65 0.137 8.5
18 1/6 5/12 5/12 1.52 0.179 12.0
19 5/12 1/6 5/12 1.68 0.164 11.0
20 1/3 1/3 1/3 1.62 0.164 9.5
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mixture experiment modeling, component effects, 
and model validation investigations presented in 
Sections 5, 6, and 7. Those investigations were 
performed by Greg, with help from Mark, after the 
science fair was over.
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■ Appendix: Steps of the Procedure 
for Measuring Soil Density and Water 
Capacity

The steps of the procedure used to measure 
density, water capacity by volume (WCV), and 
water capacity by mass (WCM) of a soil are listed 
below.

1. Weigh an empty 100-ml cylinder and 
record its mass in grams using a scale that weighs 
to the nearest 0.1 g.

2. Fill 100-ml cylinder with the soil and pack 
the soil by tapping the cylinder on the table. Add 
soil and pack until the packed volume is 85 to 100 
ml.

3. Weigh the cylinder plus soil, and record its 
mass in grams.

4. Subtract the cylinder mass from cylinder-
plus-soil mass to get soil mass in grams.

5. Record the volume of the soil in the 
cylinder to the nearest ml.

6. Calculate soil density in g/ml using the 
formula

 Density = Mass/Volume. (A.1)

7. Put 10 ml of water on top of the soil sample 
and cover with a double layer of plastic wrap held 
on by a rubber band, and let sit for 20 hours.

8. Record the volume of the dry portion of the 
soil in the cylinder to the nearest ml.

9. Subtract the volume of dry soil from the 
total soil volume to get the volume of wet soil (in 
ml) in the cylinder.
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Table 4.  Predicted and Measured Density and WCM With 95% Prediction Intervals for Validation Soils

 Density (g/ml) WCM (%)

Soil # Pred. Meas. 95% PI Pred. Meas. 95% PI

11 1.59 1.58 1.46-1.71   8.5   7.0   5.9-11.1
12 1.49 1.48 1.37-1.62 10.8 11.0   8.3-13.4
13 1.48 1.50 1.36-1.60 11.6 12.5   9.0-14.2
14 1.21 1.16 1.09-1.34 17.5 17.5 14.8-20.2
15 1.31 1.31 1.18-1.43 16.7 14.5 14.1-19.4
16 1.66 1.68 1.54-1.78   8.4   8.0   5.8-11.1
17 1.65 1.65 1.53-1.78   9.7   8.5   7.1-12.2
18 1.47 1.52 1.34-1.59 11.9 12.0   9.3-14.5
19 1.59 1.68 1.47-1.71 11.0 11.0   8.4-13.5
20 1.59 1.62 1.49-1.71 10.6   9.5   8.1-13.1
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10. Calculate WCV in g/ml using the formula

 WCV = 10/Volume of wet soil. (A.2)

Here 10 is the ml of water that is assumed to 
weigh 10 g.

11. Weigh a paper plate and record its mass in 
grams. Tare the scale.

12. Remove approximately 20 g of wet soil 
from the top of the cylinder and put on the paper 
plate.

13. Break up wet soil into small pieces to dry.
14. Weigh the wet soil (with scale tared) and 

record its mass in grams.
15. Put the plate with wet soil on table to dry 

for approximately 24 hours.
16. Weigh the dry soil and plate, then subtract 

the mass of the plate to get the mass of the dry soil 
in grams.

17. Subtract the mass of dry soil from the 
mass of wet soil to get the mass of water in wet 
soil, in grams.

18. Calculate WCM in % using the formula

WCM = 100 x mass of water in wet soil 
 mass of wet soil 

(A.3)

Sidebar by Mark Piepel

The soil mixture experiment was the first 
science fair project I did, when I was in sixth 
grade. I’m in eighth grade now.  It was very 
interesting learning about statistics for mixture 
experiments. I enjoyed working with my dad.  It 
was funny when we went to the river to get silt, 
and an old man yelled at us for walking across 
his property. We were suspicious looking 
wearing winter coats and boots, and carrying a 
shovel and a bucket!

I was surprised when I won the grand prize 
at my school’s science fair. Also I got out of 
school for a day to go to the regional science fair 
where I won second prize for sixth graders. I 
won ribbons for both prizes and some money at 
the regional science fair!
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■ Organize Your Team For College 
Bowl 2000.

The 1999 College Bowl at the Baltimore Joint 
Statistical Meetings (JSM), sponsored by the 
National Statistical Honor Society Mu Sigma Rho 
and the ASA Section on Statistical Education, was 
once again successful. Teams representing the 
graduate programs from the Universities of Florida, 
Iowa, Maryland and South Carolina participated in 
the two-day affair. After Tuesday morning’s 
semifinal competition, emceed by Walt Piegorsch 
of the University of South Carolina, teams from 
Maryland and Florida advanced to Wednesday’s 
final, emceed by Chuck McCullogh from Cornell 
University. The loss by the University of Iowa 
signified at least a lull in the dominance from the 
Hawkeye State (Iowa or Iowa State have won this 
competition four out of the last five years). The 
Maryland team’s advancement to the final round 
continues a College Bowl tradition of local teams 
doing well (runners-up from previous College 
Bowls include University of Chicago at the Chicago 
JSM, UC-Santa Barbara at the Anaheim JSM, and 
Texas A&M at the Dallas JSM). The Maryland team 
actually was a conglomeration of students from the 
campuses at College Park and Baltimore County. 
Maryland and Florida faced off Wednesday 
morning, with the Gators from Florida coming 
a w a y  w i t h  t h e i r  f i r s t  c h a m p i o n s h i p . 
Congratulations Gators! 

This year’s College Bowl offered some unusual 
twists and surprises. Due to malfunctioning 
buzzers, the contestants were forced to strike their 
water glasses in order to ring in to answer a 
question. Though it added some subjectivity to the 
proceedings, many claimed that the Bowl had a 
nice “down-home feel” and many also preferred the 

pleasant “ding” of the water glass to the buzzer. No 
major controversies erupted due to the lack of 
electronic buzzers.  Another twist to the 
proceedings occurred since only four teams 
entered into the competition. A special game was 
scheduled for Wednesday’s action pitting the 
champion Florida team against a team of faculty 
members. The Faculty Team consisted of past 
emcees Bob “Boss” Hogg of the University of Iowa, 
Linda Young of the University of Nebraska, John 
Boyer of Kansas State University, Bill Warde of 
Oklahoma State University. The Faculty got off to a 
quick start in the game, taking a commanding lead 
over the Gators who appeared a bit hesitant at the 
beginning. But soon the Gators woke up and 
started to gain momentum. The score was tied with 
one toss up and bonus question left. John Boyer 
saved the day for the Faculty Team by answering 
the last toss up question. Special thanks go to the 
Faculty Team for their willingness to participate. 

■ What Happens In College Bowl?
The Bowl is a single elimination tournament 

played each year at the Joint Statistical Meetings. 
Teams of four players are used. Each match consists 
of a fixed number of toss up questions (usually 
around 15) and usually lasts 15-20 minutes. Each 
time a team answers the toss up question correctly, 
they are awarded a bonus question. All questions 
are worth 10 points. Many subjects are used in 
College Bowl, including questions regarding the 
history of statistics, mathematical statistics, 
statistical methodology, to questions about ASA and 
its officers and journals. Occasionally a “groaner” 
question is asked to keep the proceedings light. 
And often a participant will give a comical answer 
to a question that gets the audience laughing. It’s 
not necessary to study for the competition, though 
many of the successful teams in the past (including 
Florida) have organized study sessions. The 
important thing to remember is that College Bowl is 

Question:
Who Chomped Their Way to the 
1999 College Bowl 
Championship?

Answer: 
Mark Payton

Mark Payton is an assistant professor in the 
Statistics Department at Oklahoma State University.
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meant to be fun and a way to get students involved 
in ASA and JSM. 

■ How Does Participation Benefit Me?
Besides the fun of participation and the 

knowledge and useful information learned, every 
student participant in every College Bowl has 
received an award. The 1999 College Bowl again 
saw excellent corporate sponsorship, with very 
generous awards offered by MathSoft, SAS, 
Minitab, StatXact, Marcel Dekker, John Wiley & 
Sons, Addison-Wesley and Duxbury, with a total 
dollar value exceeding $10,000! Awards ranged 
from student versions of popular statistics software, 
to textbooks, to several full professional versions of 
stat ist ical  software.  Award 
selection was by “playground 
rules”: the members of the 
winning team (in random order, 
of course) chose first, from all 
the award vouchers. Next, the 
second-place team chose from 
remaining vouchers, and so on. 
College Bowl is also a great way 
to meet students and faculty 
from other institutions.

■ How Do I Get My 
Team Organized?

The  Co l l e ge  Bowl  i s 
scheduled to return again in 
2000 at Indianapolis. It is 
anticipated that several of the ‘99 
sponsors will return as sponsors 
in ‘00, and there will surely again 
be awards for the 8 teams 

participating. Teams consist 
of 4 players (no alternate). 
An eligible player must have 
been a student in good 
standing (at any level) at 
some time during the 2000 
calendar year. Joint teams 
from several universities/ 
colleges are welcome. Rules 
of play and sample questions, 
as well as information on Mu 
Sigma Rho, can be found at 
h t t p : / / w w w. s t a t . s c . e d u / 
msrnatl.html.

To reserve a spot for 
your team, there are no 
registration fees or forms to 
fill out. All we ask is that you 
(1) reserve your spot in good 
f a i t h  ( i . e .  m a k e  a 
commitment to actually field 

a team), and (2) submit the names of you team’s 
players. In years past, teams have been asked to 
provide questions for the competition. This is no 
longer required of the participating teams. Teams 
are encouraged, however, to submit questions if 
they so desire. If you expect to field a team, please 
notify Mark Payton as soon as possible: mpayton@
okstate.edu. Your team is not officially registered, 
though, until it submits the names of its team 
members. Teams may register up to the Joint 
Statistical Meetings. However, only eight teams will 
be accepted. If byes are necessary in the first 
round, they will be awarded to registrants in the 
order they registered.

Hope to see you in Indianapolis! 
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Florida's championship team, from left, Angel Novikov, Brian Caffo, Ziyad Mahfoud, Philip 
McGoff and Galin Jones.  

Faculty team, from left, John Boyer, Linda Young, Bill Warde, and Bob Hogg (not 
shown). In the background is moderator Chuck McCullough. 
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■ 1. Question 
How important is randomization?

■ 2. Activity 
Across the midwest farmers are constantly 

looking for that competitive edge that will increase 
profits. Responding to this demand, seed 
companies have developed, through cross 
breeding, hybrid varieties of corn with higher and 
higher yields. More recently, through genetic 
engineering, there are now corn varieties that are 
resistant to the affects of herbicide residue and 
others that can combat pests like the European 
corn borer. Once a variety of corn is developed, the 
true test of its values comes in field trials. A field 
trial is a designed experiment used to compare 
varieties of corn (or soybeans, or wheat, etc.) in 
terms of average yield (or some other measure of 
quality). Sir Ronald Fisher developed many of the 
methods of applied statistics while analyzing 
agricultural field experiments at Rothamsted in 
England. The following activity simulates an 
agricultural field experiment, or field trial, 
conducted to compare two varieties of corn, A and 
B.

■ Class Activity Introduction
Researchers at a large seed company are 

planning a field trial to compare two hybrid 
varieties of corn. The response of interest is the 
yield, in bushels per acre. The better variety will be 
the one with the highest yields but the researchers 
recognize that variation in soil composition, 
fertility and drainage will have effects on the 
growth of plants and thus yield. There is a filed 
with 36 plots available for the experiment. On 18 
plots variety A will be planted and on the other 18 
plots variety B will be planted. The researchers 
wish to see if the two varieties have equal yields, 
on average, or if the two varieties differ 
significantly. If the two varieties really do differ, the 
researchers would like their experiment and the 

subsequent statistical analysis to detect this true 
difference. The ability of a statistical procedure to 
detect a true difference is called the power of the 
procedure. The researchers must decide how to 
assign the varieties to the plots.

Convenience Assignment
It is easiest to plant one variety on 18 plots on 

one side of the field and the other variety on the 18 
plots on the other side. Modern machinery cam 
plant up to 18 rows at a time, so planting in this 
way can be done in one or two passes through the 
field. Below is a picture of such an assignment and 
the yields, in bushels per acre, for each plot.

Summary   n   mean   std. dev  
A    18   144.9   8.29  
B    18   141.8   7.65

Based on this assignment, by convenience, 
does one variety appear to have a larger mean 
yield? Is there a significant difference in mean 
yields between the two corn varieties?

Hal SternW. Robert 
Stephenson

W. Robert Stephenson and Hal Stern are University 
Professors of Statistics at Iowa State University, Ames, IA.  
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Systematic Assignment 

Many people think that an alternating 
sequence is a random, or at least an unbiased, 
sequence.  For example,  when ass igning 
participants to treatment and control, taking every 
other participant (alternating) for the treatment 
group appears random. However, if participants 
are lined up alternating between male and female 
then all the males will be in one group and all the 
females in the other. Gender and group would be 
completely confounded. That is the effects of 
treatment and control are inseparable from gender 
effects. In a field, an alternating pattern would be 
like a checkerboard. Below is a picture of such an 
alternating pattern and the yields, in bushels per 
acre, for each plot.

Summary   n   mean   std. dev  
A    18   142.3   5.75  
B    18   144.5   5.37

Based on this assignment, alternating, does 
one variety appear to have a larger mean yield? Is 
there a significant difference in mean yields 
between the two corn varieties?

Discuss the results from the analysis of the 
convenience assignment data and those from the 
analysis of the alternating assignment data. Some 
may find it a bit disturbing that B appears better 
for one assignment while A appears better for the 
other. Of course, this could be due to chance 
variation. It could also be due to a poor assignment 
of treatments. For example, the right side/left side 
assignment is vulnerable to bias due to soil fertility, 
or drainage that is different from one side of the 
field to the other. The checkerboard assignment is 
also susceptible to fertility, drainage or other 
gradients.

Random Assignment 
What if chance is used to assign varieties to 

plots? How, physically, would you randomly assign 

varieties to plots? Come up with a randomization 
scheme to assign variety A to 18 plots and variety B 
to the remaining 18 plots.  Record your 

assignments in the table below.
Once you have completed your random 

assignment, ask your instructor for “The Truth” — 
this sheet gives the yield for each plot using either 
variety. “The Truth” was used to fill in the yields for 
the plots in the convenience and alternating 
patterns you looked at earlier. In general, “The 
Truth” is not available since it requires knowing 
what would happen to the same plot of land using 
each of the treatments. 

Write down the yields for your random 
assignment — if you have an A in the row 1, 
column 1 plot then you would put down 130 
whereas if you have a B in the row 1, column 1 
plot you would put down 118 for the yield. Repeat 
for all squares. This gives you 18 A yields and 18 B 
yields. Based on this assignment, at random, did 
you find a significant difference in mean yield 
between the two corn varieties? 

Share and discuss your results. Examine “The 
Truth” more closely. Which variety appears to have 
the larger yield? By how much?

■ 3. Suggested Solution

Convenience Assignment
Using a two independent sample analysis to 

compare the mean yields of the two varieties the 
value of the t-test statistic is 1.17 with an 
associated two sided P-value of 0.25. The P-value 
is the same whether you use the pooled or non-
pooled option on the TI-83. If you are using the 
conservative degrees of freedom, min(n1-1, n2-1) = 
17, the P-value would be 0.26. Although variety A 
has a slightly larger mean yield, there is not a 
statistically significant difference between the 
sample mean yields for the two varieties.
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Alternating Assignment 

Using a two independent sample analysis to 
compare the mean yields of the two varieties the 
value of the t-test statistic is -1.20 with an 
associated two sided P-value of 0.24. The P-value 
is the same whether you use the pooled or non-
pooled option on the TI-83. If you are using the 
conservative degrees of freedom, min(n1-1, n2-1) = 
17, the P-value would be 0.25. Although variety B 
has a slightly larger mean yield, there is not a 
statistically significant difference between the 
sample mean yields for the two varieties.

Random Assignment 
How one randomly assigns varieties to plots is 

a good class discussion question. Some students 
might suggest flipping a coin for each plot; heads = 
A and tails = B. This is random but will not assure 
18 plots with variety A and 18 with variety B.

One way to randomly assign the varieties to 
the plots is to use a die.

—Roll the die, this will give the row number 
for the plot 

—Roll the die again, this will give the column 
number for the plot 

—Assign variety A to the plot with the 
(row,column) numbers from above 

—Repeat the steps above until 18 plots have 
variety A 

—Fill in the remaining 18 plots with variety B
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Another way to randomly assign the varieties 
to plots is to use the TI-83 to generate a random 
assignment. Essentially what we want to do is to 
select 18 of the 36 plots at random to receive 
variety A. The remaining 18 plots (they are chosen 
at random by default) will receive variety B. To do 
this first label the plots sequentially from 1 to 36. 
Then using the TI-83 calculator;

—Put the numbers 1, 2, 3,..., 36 in L1. 
—Generate 36 uniform random digits in L2. 

Math → PRB → 1:rand → ENTER rand (36) → 
STO → L2 

—Arrange L2 in ascending order while 
carrying the entries from L1 along. 2nd → LIST → 
OPS → 1:SortA(→ ENTER SortA(L2, L1) → 
ENTER 

—Read off the first 18 numbers in list L1. 
These plot numbers will receive variety A. The 
remaining plot numbers will receive variety B.

Summary n mean std. Dev
A 18 150.4 9.49
B 18 136.3 8.74

Using a two independent sample analysis to 
compare the mean yields of the two varieties the 
value of the t-test statistic is 4.64 with an 
associated two sided P-value that is virtually zero. 
The P-value is the same whether you use the 
pooled or non-pooled option on the TI-83. Even 
using the conservative degrees of freedom, min(n1-
1, n2-1) = 17, the P-value is virtually zero. Varieties 
have different mean yields and that difference is 
statistically significant.

Closer examination of “THE TRUTH” reveals 
that variety A has a yield that is 12 higher than 
variety B on every plot. The true difference in yield 
between variety A and variety B is 12 bushels per 
acre.

■ 4. Discussion

THE TRUTH



ASA

Assignment by convenience or using an 
alternating pattern failed to uncover the true 
difference between the two varieties. “THE 
TRUTH” was set up in such a way that the 
convenience pattern and alternating pattern would 
mislead the experimenter. If you look closely at 
“THE TRUTH” you will see that there are 
alternating high/low yield gradients running 
diagonally across the field.  By planting one variety 
on one side of the field, or in the alternating 
pattern, the superiority of variety A is hidden by 
these diagonal yield gradients. In real fields the 
truth is not known but non-random assignment of 
varieties to plots can mislead the experimenter in 
much the same way. The hidden patterns in real 
fields can confound the effects of the varieties.

Randomization, the random assignment of 
varieties to plots tends to take hidden patterns (or 
lurking variables) and spread their effects evenly 
across the treatment groups. This allows us to see 
the underlying truth most of the time. This 
disclaimer, “most of the time,” is important. Even 
with randomization, we are not guaranteed to find 
a statistically significant difference even when a real 
difference does exist. In fact, the chance that a test 
of hypothesis can detect a difference when one 
exists is called the power of the test. By looking at 
the results of tests based on many random 
assignments, this activity can be used to simulate 
the power of the two sample t-test to detect a 
difference in mean yield of 12 bushels per acre. 
When this randomization activity was done by 40 
AP statistics teachers at a short course, all but one 
of the teachers obtained a t-test statistic that was 
statistically significant. That is, the simulated 
power was 39 out of 40 or 97.5%.

■ 5. More on Power
Let’s look at power in a little more detail. What 

we would like to know is of all the possible 
randomizations of varieties to plots how many 
would produce a significant difference in sample 
mean yields? There are over 9 billion possible 
randomizations so enumerating all of them is out 
of the question. We can tackle this problem 
theoretically with some simplifying assumptions. 
For the two sample problem, it is easiest to look at 
power assuming normally distributed values with a 
common, and known variance. For the corn yield 
example we might assume that the yields for 
variety A are normally distributed with a mean µA 
and variance σ2=87. Additionally, let’s assume that 
the yields for variety B are normally distributed 
with a mean µB and variance σ2=87. The value 87 
for the population variance is obtained from the 
values reported in “THE TRUTH.” We need to first 
establish what is a statistically significant 

difference. To do this we can use the 68-95-99.7 
(or empirical) rule. Recall that approximately 95% 
of normally distributed values are within 2 
standard deviations of the mean. So any difference 
whose absolute value is greater than 2 standard 
devia t ions  i s  s ta t i s t ica l ly  s igni f icant  a t 
approximately the 5% level. We have the variances 
for individual yields but we need the variance (to 
get the standard deviation) of the difference in 
sample mean yields.

Sample mean yields (n=18) for variety A will 
be normally distributed with a center at µA and a 
variance 

σ2 87

18
4 833

n
= = .

Similarly, sample m e a n  y i e l d s 
(n=18) for variety B will be normally distributed 
with a center at µB and variance 

σ2 87

18
4 833

n
= = .

The difference in sample mean 
yields will be normally distributed with a center at 
µA - µB and a variance of 

σ σ2 2 87

18

87

18
9 667

n n
+ = + = .

T h u s  t h e s t a n d a r d 
deviation for the difference in two sample mean 
yields (n=18) is

9 667 3 11. .=
A n y  a b s o l u t e d i f f e r e n c e  i n 
sample mean yields larger than two standard 
deviations (6.22) would be considered statistically 
significant.

To calculate the power all we would need to 
do is to compute the probability of getting a 
difference in sample mean yields that is less than 
–6.22 or greater than 6.22 when we assume the 
true difference in means µA – µB = 12. This is just 
the probability that a normal random variable with 
mean 12 and standard deviation 3.11 takes on a 
value less than –6.22$ or greater than 6.22. We can 
obtain the standardized values 

z
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The normal c u m u l a t i v e 
distribution function (cdf) for z1 is zero and so 
contributes nothing to the power calculation. The 
cdf for z2 is 0.03, so the chance of being greater 
than z2 =–1.86, and thus the power, is 1 – .03 = 
.97. The computation of the power is illustrated in 
the figure below.

Power is actually a function of how big a 
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difference you want to 
detect. In the calculation 
above, the true difference 
of 12 will be picked up 
most of the time by a two 
independent sample test 
when randomization is 
used to assign varieties to 
plots. The power will be 
much lower for smaller 
true differences. You can 
adjust “THE TRUTH” so 
that variety A beats variety 
B by say 6 bushels. You 
will find that the power as 
calculated above (think 
about moving the right 
hand normal curve in the 
figure above so that it is 

centered at 6 instead of 
12) is less than before 
(around 0.50). Power is 
clearly a function of the 
size of the true difference. 
Procedures have more 
power to detect  large 
differences than small 
differences. Power is also 
affected by sample size. 
We know tha t  l a rger 
sample sizes are good 
because they reduce the 
variation in the sample 
mean. It is nice to know 
that larger sample sizes 
also provide more power 
for much the same reason. 
Think about how the 
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Once upon a time I wanted to become a 
veterinarian. Like many other people, I wound up 
in the corporate world instead, leaving my 
childhood dream long behind. After graduating 
from Miami University with a B.A. and a B.S., both 
in mathematics and statistics, I entered an actuarial 
consulting firm. It did not take long for me to 
realize that the corporate world was not for me, 
and that I wanted to go back to school to earn a 
Ph.D. in order to teach at the college level. It took 
a few years for me to get my ducks in a row, but I 
managed to find my way into the doctoral program 
in statistics at The Ohio State University.

Dr. Doug Wolfe can take the initial blame (or 
receive the initial credit!) for setting me loose on 
the statistics education community, as he was the 
first person at Ohio State to whom I talked about 
my desire to teach at the college level. He was the 
person who initially talked to me about the One-
of-a-Kind degree program at Ohio State. This 
program allows students to combine multiple 
disciplines into a unique personalized program and 
would allow me to develop a program combining 
statistics with education. 

I did indeed pursue a One-of-a-Kind degree in 
statistics education at Ohio State. By combining the 
core coursework of the doctoral program in 
statistics with carefully chosen courses from a 
doctoral program in education, I created a program 
for myself that would start me on my path to 
becoming a statistics educator.

Some people might wonder why I couldn’t 
just pursue a Ph.D. in statistics and teach at the 
college level. I could, but I didn’t want to. I knew 
(and still know) many faculty members with 
doctorates in statistics who are wonderful teachers. 
So, I knew it could be done. However, I felt that I 
needed a background in education as well as 
statistics in order to be the best statistics teacher I 
could be.

It’s hard for me to describe why I felt that I 
needed to learn about the world of education in 
addition to the world of statistics. In some ways, 
it’s so simple. I went to graduate school knowing 
that I had the end goal of teaching statistics. Since 
teaching was my area of interest, learning about 
teaching and learning seemed natural. Just as other 
doctoral students in statistics have areas of 
concentration like missing data, phylogenetic trees, 
and nonparametr ic  theory,  my area  o f 
concentration is the teaching and learning of 
statistics. When I first entered graduate school, I 
thought I had no interest in doing research. What I 
found during my graduate school years was that I 
do have an interest in research, but my research 
interests center around issues of statistics education 
more than around the content of statistics.

Instead of trying to describe why I wanted my 
degree to combine statistics with education, 
perhaps I can share with you the education classes 
that opened my eyes to many things. While 
immersed in a community of educators, I learned 
more about teaching and learning than I ever 
imagined I would. My coursework included:

■ Six quarters of seminar with doctoral students in 
the Mathematics, Science, and Technology 
program. Topics in these seminars included:
• How to read and share educational research 

articles and topics with others;
• How to begin writing a theoretical framework, a 

literature review, and a dissertation proposal; 
• How to construct a data collection instrument;
• How to do a pilot study;
• Qua l i t a t i ve  re search  methodology  in 

mathematics education; and
• The history of mathematics education.

Student Voices
On Becoming a Statistics 

Jacqueline  
B. Miller

Jackie Miller is a doctoral candidate in statistics 
education under Dr. Emmalou Norland and Dr. Bill Notz 
at The Ohio State University. Jackie is currently doing a 
job search for a tenure-track position that will allow her 
to continue teaching statistics and researching the 
teaching and learning of statistics.
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As far 

as I 

know, 

at the 

time 

researching many different things, but who support 
of the work of others and respect their diversity. 

I cannot imagine not having had the 
experiences that I have had through the College of 
Education. It has been my experience in education, 
partnered with my experience in statistics that has 
helped me grow as a statistics educator. 

The field of statistics education is not new. 
Research on teaching statistics has been around for 
decades. And, if you think about it, all statisticians 
are teachers to some extent, be it in the classroom 
or with a consulting client. Even so, as far as I 
know, at the time of my graduation (June 9, 2000) 
I will have the only existing doctorate in statistics 
education. I don’t see my interest in statistics 
education as unique, and I would like to help 
others pursue degrees in statistics education. In 
addition, I look forward to continuing research on 
the teaching and learning of statistics. 

You know, once upon a time I wanted to be a 
veterinarian. Instead, I have fulfilled my love for 
animals as the proud mom of two dogs and two 
cats. And, as far as my career goes, I am very 
content with my choice to become a statistics 
educator. Teaching statistics is fulfilling for me, and 
doing research on the teaching and learning of 
statistics is a natural partner for my teaching. If you 
are interested in statistics education and/or if some 
of what I have said here rings true for you, go for 
it—approach your advisor about becoming a 
statistics educator. For details about my program 
and/or information about how I was able to pursue 
this degree, feel free to contact me at Miller.203@
osu.edu.

■ A course devoted entirely to learning theories in 
the fields of mathematics and science. Here I 
learned about Bruner, Piaget, and Vygotsky; 
scaffolding (where a “more knowledgeable other” 
assists a learner in knowledge construction); 
information processing; and enough about 
constructivism to get me interested in researching 
students’ construction of knowledge.

■ A college teaching course where I learned many 
instructional strategies, including the jigsaw and 
minute papers, that I have been able to apply in 
my own classrooms.

■ A course in multicultural education where I 
learned to appreciate others’ differences and to not 
apologize for who I am as an individual.

■ Two courses (“Women, Technology, and 
Education” and “Computers in the Classroom”) 
with Dr. Suzanne Damarin, who not only helped 
me discuss the issues of the courses, but pushed 
me to stretch the boundaries of my world.

■ A course called “Experimentation” where I was 
exposed to many educational technologies 
including CBLs and CBRs (data collection devices 
for use with Texas Instruments calculators), 
Measurement  in  Mot ion (an interact ive 
measurement software package that shows how 
measurement is used in real life situations), and 
ProbSim (a probability simulator).

■ Three courses in qualitative research where I 
went through a paradigm shift from staunch 
positivist researcher relying on quantitative 
methods only to interpretivist researcher relying on 
qualitative methods. I also learned to match 
research methods with my developing research 
questions.

In addition to my coursework in education, 
my experience with people in the College of 
Education taught me things that are not taught in 
the classroom. I met new people who are 




